

W/Z boson production in muonic final states at the ATLAS experiment

VALERIO IPPOLITO

Università di Roma "La Sapienza" INFN Sezione di Roma

Motivations

- studying DY production of W and Z bosons is a strong benchmark for QCD
 - test perturbative calculations
 - constrain proton PDFs
- W, Z are standard high- p_T candles
 - study lepton reconstruction performances
 - production rate can be used for luminosity measurement
- necessary step towards new physics searches
 - detector and physics must be fully understood
 - electroweak signatures are starting point to chase new physics signatures

The ATLAS experiment

[ID] B = 2 T, up to $|\eta| < 2.5$ $\sigma/pT \sim 3.4 \times 10^{-4} \text{ pT} \oplus 0.015$

```
[ECAL]
up to |η| < 3.2
σ/E ~ 10%/√E
```

[HCAL] up to $|\eta| < 3.2$ (FCAL: 4.9) $\sigma/E \sim 50\%/\sqrt{E \oplus 0.03}$

[MS] up to |η| < 2.7 σ/pτ < 10% up to 1 TeV

Measurement strategy

$$= \sigma_{W/Z} \times BR(W/Z \to l\nu/ll) = \frac{N-B}{A_{W/Z} \cdot C_{W/Z} \cdot L_{\text{int}}}$$

full 2010 pp data sample @ 7 TeV [~35 pb⁻¹]

- ★ C_{W/Z}: efficiency in the fiducial region (from data)
- * Aw/z: extrapolation to the full kinematic region (PYTHIA)
- * background estimated from MC (EW) and data (QCD)

 \longrightarrow 84103 W⁺ (55162 W⁻) candidates

Valerio Ippolito - W/Z production in muonic final states - IFAE2011

(see <u>http://cdsweb.cern.ch/record/1338570</u>) 4

Muon reconstruction

combination of tracks measured from ID and MS

for this analysis we restrict to $p_T > 20$ GeV, $|\eta| < 2.4$ requesting isolated muons ($\sum_{\Delta R < 0.4} p_T(tracks)/p_T(\mu) < 0.2$)

MC efficiencies are corrected to reproduce data

E_T^{miss} reconstruction

missing transverse energy is measured from CALO and MS ECAL/HCAL: reconstructed topological clusters MS: correction for muons

calorimeter coverage up to $|\eta|$ < 4.5

Valerio Ippolito - W/Z production in muonic final states - IFAE2011

$$\begin{split} & E_x^{\text{miss}} = E_x^{\text{miss, calo}} + E_x^{\text{miss, muon}} \\ & E_y^{\text{miss}} = E_y^{\text{miss, calo}} + E_y^{\text{miss, muon}} \\ & E_T^{\text{miss}} = [(E_x^{\text{miss}})^2 + (E_y^{\text{miss}})^2]^{\frac{1}{2}} \end{split}$$

Background estimation

~7%

~0.4%

electroweak backgrounds

[W] $Z \rightarrow \mu \mu$, $W \rightarrow \tau \nu$, t t, $Z \rightarrow \tau \tau$, diboson

 $[Z/\gamma^*]$ diboson, t t, Z $\rightarrow \tau \tau$, W $\rightarrow \mu \nu$

QCD backgrounds

Valerio Ippolito - W/Z production in muonic final states - IFAE2011

400

200

0

70

75

Results in the muon channels

- * W: E_T^{miss} resolution and scale (2%), QCD background (0.8%)
- * Z/ γ^* : muon reconstruction (0.8%) and isolation (0.6%)
- ★ luminosity (3.4%)
- ★ acceptance (theory) (~3/4%)

Valerio Ippolito - W/Z production in muonic final states - IFAE2011

m_{uu} [GeV]

80 85 90 95 100 105 110 115

e/µ combined results

combining electron and muon channels data consistent with NNLO predictions

(http://arxiv.org/abs/1011.3540)

Ratio	Data
W^+/Z	$6.563 \pm 0.049(sta) \pm 0.134(sys) \pm 0.098(acc)$
W^-/Z	$4.345 \pm 0.034 (sta) \pm 0.095 (sys) \pm 0.065 (acc)$
W/Z	$10.906 \pm 0.079(sta) \pm 0.215(sys) \pm 0.164(acc)$

Valerio Ippolito - W/Z production in muonic final states - IFAE2011

Further steps: W⁺W⁻

→ sensitive to TGC → dominant bkg to H→WW

(see http://cdsweb.cern.ch/record/1334877)

selection:

- * opposite sign eµ/µµ/ee
- * large E_T^{miss}
- * Z mass veto
- * jet veto (top bkg rejection)

	еµ	μμ	ee
events	5	2	1
s/b ratio	3.7	6.7	5.0

Valerio Ippolito - W/Z production in muonic final states - IFAE2011

Conclusions and future steps

- W/Z cross section in muon channels
 - good agreement with simulation
- combination with electron channels
 - data consistent with NNLO predictions (different PDFs choice)
 - total experimental uncertainty at percent level (2.4% for W[±], 1.1% for Z)
 - theory (3-4%) and luminosity uncertainties (4%) already dominant
- differential measurements forthcoming
 - stronger constraints on proton PDFs
- next step: diboson
 - WW cross section measurement with 2010 data
 - more to come with 2011 improved statistics

Backup slides

Detailed event selection

MS			
	$W^{\pm} \rightarrow \mu^{\pm} v$	Z → µ+µ-	
event selection	 ≥ 1 vertex (with ≥ 3 tracks) within 20 cm of the nominal position p_T > 13 GeV muon trigger 		
muons	• combined ID and MS reconstruction • $p_T > 20$ GeV, ID quality cuts, $ z_0 < 10$ mm • track based isolation ($\Sigma_{ID} p_T (\Delta R < 0.4) / p_T(\mu) < 0.2$)		
candidates	 MET > 25 GeV m_T > 40 GeV 	 muons of opposite charge 66 < m_{µµ} < 116 GeV 	

Backgrounds to W/Z analyses

$W^{\pm} \rightarrow \mu^{\pm} V$		Z → µ¹	·μ ⁻
Z → µ+µ-	[3.5%]	t t	[0.1%]
$W^{\pm} \rightarrow \tau^{\pm} v$	[2.8%]	Z → τ+τ-	[0.07%]
Z → τ⁺τ⁻	[0.1%]	$W^{\pm} \rightarrow \mu^{\pm} v$	[0.006%]
t t	[0.4%]	WW/WZ/ZZ	[0.2%]
WW/WZ/ZZ	[0.1%]		
QCD (heavy quarks, π/K , fakes)	[1.7±0.2±0.7%]	QCD (heavy quarks, π/K , fakes)	[0.22±0.16±0.09%]

QCD backgrounds are extracted from data control regions

Detailed systematics [%]

	$\delta\sigma_{\!W}/\sigma_{\!W}$	$\delta\sigma_{\!W+}/\sigma_{\!W+}$	$\delta\sigma_{\!W-}/\sigma_{\!W-}$	$\delta\sigma_Z/\sigma_Z$
Trigger	0.7	0.8	0.9	0.1
Muon Reconstruction	0.5	0.6	0.6	0.8
Muon Isolation	0.3	0.3	0.3	0.6
Muon $p_{\rm T}$ Resolution	0.02	0.03	0.02	0.01
Muon $p_{\rm T}$ Scale	0.4	1.1	0.8	0.2
QCD Background	0.8	0.7	1.1	0.1
Electroweak Background	0.4	0.4	0.5	0.02
$E_{\rm T}^{\rm miss}$ Cleaning	0.07	0.07	0.07	-
$E_{\rm T}^{\rm miss}$ Resolution and Scale	2.0	2.0	2.0	-
$C_{W/Z}$ Theoretical uncertainty	0.3	0.3	0.3	0.3
Total experimental uncertainty	2.4	2.7	2.7	1.1
$A_{W/Z}$ Theoretical uncertainty	3.0	3.0	3.0	4.0
Total excluding Luminosity	3.9	4.0	4.0	4.1
Luminosity		3.	4	

[systematics on acceptances and luminosity are treated as correlated in W/Z comparison]

Acceptance systematics

method		A _{w/z} systematics [%]		
		W⁻	Z/γ^{*}	
CTEQ6.6 set @ 90% C.L, MC@NLO	1	1.8	1.6	
MRST LO* / CTEQ6.6 / HERAPDF 1.0 sets, PYTHIA	2.7	0.9	2.0	
CTEQ6.6 set, Рүтніа / MC@NLO	0.4	1.4	2.3	
overall	-	3	4	

$Z \rightarrow \mu^+\mu^-$ kinematics

Electron channels [ET > 15 GeV electron trigger]

 Z/γ^* Forward

Valerio Ippolito - W/Z production in muonic final states - IFAE2011

 $0.903 \pm 0.022(sta) \pm 0.087(sys) \pm 0.031(lum) \pm 0.035(acc)$ 19

W[±] charge asymmetry

- sensitive to valence quark distributions
 - access u/d below x ~ 0.05
- same selection criteria as in W integrated cross-section measurement
 - efficiency charge dependence has been checked
 - MC muon p_T scale and resolution corrected for each charge
- data compatible with all PDF sets so far
 - expect to contribute in PDF uncertainty reduction, particularly for valence quarks at low x

