Diboson Search and Multivariate Tools in the $l\nu + b/c$ Jets Channel at CDF

Federico Sforza

INFN & Università di Pisa

F. Sforza (INFN & Università di Pisa)

イロン イヨン イヨン ・

Examples of improvements thanks to machine learning techniques:

Diboson Search: Basics and Problems

- 2 Support Vector Machines
- 3 Neural Networks

CDF-II detector at the Fermilab TeVatron $p\bar{p}$ collider ($\sqrt{s} = 1.96$ TeV).

Diboson Search: Basics and Problems

$WW/WZ \rightarrow I\nu + b/c$ Jets Search Basics

 $hoar{
ho}
ightarrow WW/WZ
ightarrow I
u + b/c$ Jets

Event selection:

- high E_T lepton (> 20 GeV) and $\not E_T$ (> 20 GeV).
- 2 central jets (E_T > 20 GeV, $|\eta| <$ 2.0).
- At least one *Heavy Flavor (HF) Tag*:
 ⇒ presence of a secondary vertex identifies b/c jets.

Motivations:

- Rare process (e.g. $\sigma_{WZ} = 3.22 \pm 0.23$ pb) never observed in this decay channel.
- Same final states of the *WH* golden channel ($M_H \lesssim 145 \text{ GeV}/c^2$).
- $S/B \sim O(10^{-3})$, large ΔB : counting experiments are not possible.

Challenges and Solutions

Machine learning techniques are used in several areas:

- Remove hard to model backgrounds:
 - need to: reduce multi-jet (*QCD*) background. solution: QCD Veto based on Support Vector Machines (SVM) algorithm.
- Oistinguish quark flavor:
 - need to: understand underlying structure of *HF* tagged jets. solution: Neural Network Flavor Separator.
- Improve invariant mass resolution:

need to: exploit maximum information to refine jet energy measure. solution: Neural Network b-quark specific jet energy correction.

・ロン ・日 ・ ・ ヨ ・ ・ ヨ ・

Support Vector Machines

QCD and Multivariate Techniques

• Central Electrons (CEM): sample with $\simeq 25 - 30\%$ events from multi-jet (*QCD*) contamination.

data driven QCD model of the fake W obtained reversing \geq 2 out of 5 electron-id requirements:

- not reproducible with MC;
- sample statistically limited (\approx 20k events).

Is it possible to use multivariate techniques in this problem?

- Support Vector Machines algorithm supposed to be optimal in this case.
- "recently" (1995) developed machine learning technique.
- interesting tool rarely exploited in high energy physics.

SVM Discriminant

Concept: best hyper-plane dividing two classes of vectors.

Non-linear separation obtained with a transformation on the scalar products:

 $\mathbf{K}(x_i, x_j) = \phi(x_i) \cdot \phi(x_j) \quad \text{with } \phi : \Re^n \mapsto \mathcal{H} \ \mathrm{K} = \mathrm{Kernel \ function}$

 $Margin = 2 / \sqrt{w'w}$

Support Vector

Support Vector Machines

QCD Veto Based on the SVM Algorithm

Training procedure and parameter selection:

- discrimination based on combinations of 21 test variables.
- thousands of input combinations: grid computing for brute force approach;
- Criteria: maximal efficiency on the training samples.
- Consistency check on data control region.

Results:

- optimal "machine" obtained with minimal set of 6 variables:
 - \Rightarrow **3** related to the *W* kinematic;
 - \Rightarrow **2** related to the 2^{*nd*} Jet energy;
 - \Rightarrow **1** relating all jet correction to the $\not\!\!\!E_T$.
- QCD contamination $\lesssim 10\%$
- signal efficiency:

 $\varepsilon_{W(e,\nu)+2jets} \approx 95\%$, $\varepsilon_{WZ} \approx 97.5\%$.

・ロト ・回ト ・ヨト ・ヨト

QCD Rejection

Algorithm applied to $W \rightarrow e\nu$:

Same algorithm applied to $W \rightarrow \mu \nu$:

ъ

Neural Network Based Improvements:

- Heavy Flavor Separator.
- b-jet NN-energy corrections.

These improvements play a foundamental role in several CDF analysis (Single-top, WH, etc.)

Neural Networks

Neural Network Generalities

Concept: non-linear model of input distributions based on a sigmoid functions serie.

Optimal algorithm to trace hidden correlations, prefers large training sets.

• Obtain the best weights (ω_i) for o_k :

$$o_k = S\Big(\sum_{j=0}^M \omega_{jk} \cdot S\Big(\sum_{i=0}^d \omega_{ij} x_j + \mu_{0j}\Big)\Big)$$

- d input nodes, M hidden nodes, k output nodes
- Sigmoid or activation function:
 - $\mathcal{S} = \pm 1$ if node report signal or bkg

Training:

• function minimization in a *M* × *d*-dim space.

KIT* Flavor Separator

Aim: retain most of the signal (*b*-jets) pulling apart *c* and light flavor jets contribution.

- Played fundamental role in Single-top discovery.
- Secondary vertex identification already tags the jet.
- Weaker correlations:
 b production ↔ jet structure:
 - per track variables, tracks multiplicity, vertex mass...
- NN with 26 input nodes, 10 hidden nodes, 1 output node.
- 2 side distribution:
 ⇒ b-c quarks separation.

* developed by the Karlsruhe Institute of Technology.

b-Jet Energy Corrections

Standard CDF jet energy corrections can be improved assuming *b*-quark as the initial parton:

- *b*-hadrons fragmentation, presence of semileptonic decays, color flow effects: difficult to disentangle the correlations.
- NN with 9 input variables: from tracking, calorimeter, secondary vertex

- Optimization on WH MonteCarlo.
- improvement also in WZ invariant mass resolution.
- Z peak resolution (*mean/sigma*): $0.154 \pm 0.003 \Rightarrow 0.116 \pm 0.002$

Conclusions

Cut based analysis can be not enough in complicated environments when looking for rare signal.

- Machine learning techniques are a powerful tool but can not be used thoughtlessy:
 - over-fitting, training set choosing, test on control samples, etc.
- Understanding the involved physical processes is crucial to obtain good results.

Thanks for you attention!

Back Up Slides

<ロ> <部> < E> < E>

Pretag: CEM (top), CMUP (bottom)

Met

Lepton P_T

(日)

Pretag: CMX (top), EMC (bottom)

Met

Lepton P_T

27 April 2011

16/13

Pretag: CEM (top), CMUP (bottom)

 $\Delta R(lep, jet1)$

 $\Delta \phi$ (*met*, *jet*1)

27 April 2011

17/13

Pretag: CMX (top), EMC (bottom)

 $\Delta R(lep, jet1)$

 $\Delta \phi$ (*met*, *jet*1)

The CDF II Detector

3 silicon sub-detectors (L00, SVX II, ISL)

- $r_{max} \simeq 30 \text{ cm} \rightarrow \text{high track density}$
- coverage: $|\eta| \lesssim 2$

Wire chamber (COT):

- $r_{max} \simeq 130 \text{ cm}$
- coverage: $|\eta| \lesssim 1$

Calorimeter system:

- 2 sub-detectors: central e forward
- electromagnetic (EM) and hadronic (HAD) sections.

Muon chambers:

- Many sub-detectors: CMU, CMP, CMX, BMU
- coverage: $|\eta| \lesssim 1.5$

イロト イヨト イヨト イヨト

$$r, \phi, \eta \equiv -\ln[\tan(\theta/2)]$$
$$\Delta R = \sqrt{\Delta \eta^2 + \Delta \phi^2}$$
$$E_T = E \sin \theta$$

Lepton Selection

The detector has a composite structure:

effort to unify lepton reconstruction algorithms (9) and trigger paths (7):

CEM, PHX: • electrons: EM deposit + track, calorimetric isolation;

- 2 dedicated trigger paths.
- CMUP, CMX: **muons**: signal in the muon chambers + track + MIP in the calorimeter, calorimetric isolation;
 - 2 dedicated trigger paths.

BMU, CMU, CMP, CMXNT • muons (LOOSE): signal in the muon chambers + tracks, calorimetric isolation;

• 3 generic trigger paths: MET+jets.

ISOTRK: • tracks (mainly muons): high quality track, track isolation;

• 3 generic trigger paths: MET+jets.

Lepton Categories and Detector Coverage

・ロト ・回ト ・ヨト ・ヨト

Jet Selection

Jet≡ final state of quark hadronization

- reconstruction algorithm JETCLU04
- energy corrected for detector effects (JES).

Quarks $b \Rightarrow$ Heavy Flavor hadrons(HF) long lifetime: $c\tau \simeq 450 \ \mu \ m \Rightarrow$ secondary decay vertexes.

・ロト ・回ト ・ヨト ・ヨト

SecVtx algorithm:

- a jet is "tagged" if the tracks within the cone form a secondary vertex.
- b-tag efficiency ~ 40%
- c-tag efficiency ~ 6%
- mistags (fake tags) ~ 1% (background)

Background Composition

Signal topology: *lepton*+ $\not \in_T$ + 2*jets*(1 o 2 *tags*)

 \Rightarrow 4 background components:

EWK: estimate from MC ($t\bar{t}$, s-top, Z+jets, WW, ZZ).

Mistag: *W*+fake tags \Rightarrow parametrized on jet data.

QCD: multi-jet events: lepton and $\not E_T$ are faked by mis-reconstruted jets.

 \Rightarrow measured from data using a fit on $\not \in_T$.

- *W*+HF: Heavy Flavors \Rightarrow major background with large uncertainty.
 - Normalization obtained from data;

•
$$f_j^{HF} = \frac{W + HF}{W + iets}$$
 estimated from MC.

W+Heavy Flavor Background

$W + b\bar{b}$, $W + c\bar{c}$, W + c estimate

- Large theoretical uncertainty on σ_{W+jets}.
- Ratio W + HF/W + jets derived from MC (Alpgen, LO).
- Normalization (N_i^W) from the *pretag* data sample (N_i^{data}) :

 $N_j^W = N_j^{data}(1 - F_j^{nonW}) - N_j^{EWK}$

- $(1 F_i^{\text{nonW}})$: free parameter in a maximum Likelihood fit.
- \approx 90 MCs used:

QCD Background (Multi-jet Events)

- fake *W* models by reversing lepton identification cuts:
 - isolation ;
 - EM fraction;
 - shower-id.
- kinematic characteristics identical to the lepton under examination;
- maximum likelihood fit on ∉_T;

・ロト ・四ト ・ヨト ・ヨト

- systematic error of 30% on F_i^{nonW} (conservative approach);
- important to reduce the QCD contribution in the pretag sample.

QCD and Multivariate Techniques

• Electrons: sample with larger multi-jet contamination.

Modeling fake W: "anti-electron" sample, reverse \geq 2 out of 5 cuts for the shower-id; $\begin{array}{l} \textit{Had} /\textit{Em} \leq 0.0055 + 0.00045 \times \textit{E} \\ & \text{Strip } \chi^2 \neq 10 \\ & \textit{L_{shr}} \leq 0.2 \\ & |\textit{dz_{CES}}| \leq 3.0 \text{ cm} \\ -3.0 \text{ cm} \geq \textit{Q_e} \cdot \textit{dx_{CES}} \leq 1.5 \text{ cm} \end{array}$

Main issue:

• sample statistically limited (\approx 12k events)

Is it possible to use multivariate techniques in this problem?

- Support Vector Machines algorithm supposed to be optimal in this case.
- SVM is a recent (1995) "machine learning" technique ⇒interesting field of research, never used in high energy physics.