

A search for Supersymmetric Particles in events with two leptons and Etmiss with the ATLAS experiment at the LHC

IFAE Poster Session – Perugia, 27 April 2011

The two-lepton signature is a very promising venue for the discovery and measurement of Supersymmetry. Many studies have been devoted to this signature in the last fifteen years. The channels characterized by the presence of two leptons in the final state are the best channels for the measurement of SUSY particle properties. The two-lepton signature typically suffers from lower statistics than the zero lepton and one lepton analyses. On the other hand, there are advantages due to the reduced Standard Model background.

The 2010 ATLAS pp data

			-
nores	vmmoti	\mathbf{v}	TITIO

and with a good rejection of SM background, is: - transverse momentum jets - possibly some **leptons** large missing transverse energy

The main source of dilepton events is the decay of neutralinos and charginos

b) $\tilde{\chi}_i^{\pm} \to \ell^{\pm} v \tilde{\chi}_i^0$

• A two-lepton event can be obtained either through decays c) and d) on a single leg or decays a) and b) on both legs.

• The two final state leptons can have equal or opposite sign, and equal or different flavour, thus yielding four possible configurations.

Selections and signal region

The three dilepton analyses share common object definitions, a common set of event selection criteria and where appropriate they share common background estimation techniques. The only difference in event selection between the opposite-sign and same-sign analyses is the different charge requirements on the leptons in the pairs.

Electrons

• p_T > 20 GeV, |η|<2.47

Primary vertex

At least 1 good vertex with N_{tracks}>4

Jets

 anti-k_T, R=0.4 • p_T > 20 GeV, η <2.5 Reject events compatible with noise or cosmics

Missing E_T Calculated from objects and clusters

are in transition region (1.37<|\eta|<1.52) Muons • p_T > 20 GeV, η <2.4

reject events if electron candidates

 combined/extrapolated info from ID and Muon spectrometer Sum p_T of tracks <1.8 GeV in ΔR<0.2

Remove overlapping objects

- If ∆R(jet,e)<0.2, remove jet
- If 0.2<∆R(jet,e)<0.4, veto electron
- If ∆R(jet,µ)<0.4, veto muon

For selecting the interested topologies we request exactly 2 leptons with m(ll)>5GeV

The signals regions used in these analysis are all simple high missing transverse energy regions.

The number of observed and expected events for each SS channel in the MET > 100 GeV signal region at 34.3 $pb^$ is shown in the table

	Data(Observed)	Fake background (estimated)	Diboson (expected)	tī (charge-flip)
e±e∓	0	0.12±0.12±0.05	$0.015 \pm 0.004 \pm 0.003$	$0.019 \pm 0.001 \pm 0.008$
$\mu^{\pm}\mu^{\pm}$	0	$0.014 \pm 0.01 \pm 0.005$	$0.035 \pm 0.005 \pm 0.011$	0.0
e±µ∓	0	$0.03 \pm 0.026 \pm 0.005(el) \pm 0.009(\mu)$	$0.021 \pm 0.0.004 \pm 0.0.008$	$0.026 \pm 0.001 \pm 0.011$

None event expected and none event observed!

By comparing the SM expectations with the numbers of events observed in the SS channel, we put 95% confidence limits on the 'effective cross section' (cross section times branching ratio times acceptance) for new physics processes producing SS lepton pairs and MET of 0.07 pb.

$m_{CT}(\ell,\ell), m_{CT}(j,j), m_{CT}(j\ell,j\ell)$

• The values are then compared to appropriate distributions and the various leg assignments are rejected or accepted as compatible with dileptonic ttbar • If at least one leg fulfills this condition, the event is top-tagged

Estimation procedure > Define a ttbar-dominated CR region Data 2010 (\s = 7 TeV) 35 pb⁻¹ ATLAS Standard Model • Based on the contransverse mass tagger Z/γ+jets, WW, WZ, ZZ pposite Sign • 60 GeV < MET < 80 GeV tŦ. > Estimate non-top background in the CR region Dijets > Apply MC to find the ratio of ttbar events in the SR W+jets and the CR region --- SU4+SM > Get estimated number of ttbar events in SR from simple scaling, e.g. for ee $(N_{tt})_{SRee} = \left((N_{data}^{tag})_{CR} - (N_{non-tt,MC}^{tag})_{CR} \right) \frac{(N_{top,MC})_{SRee}}{(N_{top,MC}^{tag})_{CR}}$ MC dileptonic ttbar has a top-tagging efficiency of 83% both for CR and for SR Data CR: 15 top-tagged events 350 400 MC CR: 21.3±3.8 (18.8 from ttbar) E^{miss} [GeV] The estimation in SR (MET>100GeV) gives: Data SR: 13.8 + 5.6 - 5.3 In presence of low-mass SUSY the ttbar MC SR: 20.5 ± 4.8 background is overestimated by 10-15% reducing the significance for signal discovery And for MET>150GeV: Data SR: 2.8 + 1.4 - 1.3 MC SR: 4.2 ± 1.2

Background determination: fakes

Estimation done for 6 combinations: (SS, OS) x (*ee*, μμ, *e*μ) • SS: fake contribution dominant. Well described. • OS: fake contribution less important

Matrix method

• Define two lepton definitions/qualities, one "loose" (L), the other "tight" (T). • Define a "real" region where leptons (R) are expected to be real (from Z, W) • Define a "fake" region where leptons (F) are expected to be from jets • Find the probability that a real/fake lepton also passes the tight definition. This gives the real and fake efficiency ("rate"), r and f. • Then count the number of TT, TL, LT and LL in the Signal Region of the analysis • Invert the matrix and get the number of RR, RF, FR and FF events in the SR.

N_{RF} f(1 - f) N_{TL} f(1 - r)r(1-f)r(1 - r)

> It is the approximate p-value for the agreement between the SUSY signal (Standard Model) and the experimental data

> Models with p-values smaller than 0.05 are said to be excluded with 95% confidence level.

Flavour subtraction (OS)

 $\hat{\mu} < 0$

• At the base of this method there is the observation that the dominant SM OS dilepton mechanisms, ttbar, gives uncorrelated (OS) di-leptons and that the combinations come in equal rates, SF = DF. • This gives opportunity to subtract one with the other. • Useful if a signal is expected in SF • So, we can estimate the excess of SF events after the "flavour subtraction" as

 $N(e^{\pm}e^{\mp})$ $N(e^{\pm}\mu^{\mp})$ $\beta N(\mu^{\pm}\mu^{\dagger})$

S = - $1 - (1 - \tau_e)(1 - \tau_u)$

which takes into account the differences in both reconstruction efficiencies $\epsilon \mid \beta =$ and trigger efficiencies τ between muons and electrons. For data we have:

 $\beta = 0.69(\pm 0.3), \quad \tau_e = 98.5(\pm 1.1)\%, \quad \tau_\mu = 83.7(\pm 1.9)\%$

OS results

MET>100GeV	e^+e^-	$e^\pm \mu^\mp$	$\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}$
Data,	4	13	13
tī	$2.50^{+1.03}_{-0.96}$	$6.61^{+2.72}_{-2.52}$	$4.71^{+1.87}_{-1.80}$
Z+jets	0.37 ± 0.15	0.36 ± 0.13	0.91 ± 0.26
fakes	0.31 ± 0.24	-0.15 ± 0.46	0.01 ± 0.01
single top	0.13 ± 0.08	0.70 ± 0.21	0.67 ± 0.20
WW+WZ+ZZ	0.30 ± 0.15	0.36 ± 0.18	0.61 ± 0.30
cosmics	0	0.42 ± 1.07	-1.39 ± 1.43
total	$3.56^{+1.24}_{-1.12}$ (uncorr.) ± 0.36 (corr.)	8.23 ^{+3.21} (uncorr.)±0.94(corr.)	6.82 ^{+2.57} _{-1.93} (uncorr.)±0.67(corr.)

MET>150GeV	e^+e^-	$e^{\pm}\mu^{\mp}$	$\mu^{\scriptscriptstyle +}\mu^{\scriptscriptstyle -}$
Data	1	4	4
tī	$0.62^{+0.31}_{-0.28}$	$1.24^{+0.62}_{-0.56}$	$1.00^{+0.50}_{-0.45}$
Z+jets	0.19 ± 0.15	0.08 ± 0.08	$0.14_{-0.14}^{+0.17}$
fakes	-0.02 ± 0.02	-0.05 ± 0.04	0
single top	$0.03^{+0.05}_{-0.03}$	$0.06^{+0.08}_{-0.06}$	0.10 ± 0.07
WW+WZ+ZZ	0.09 ± 0.03	0.06 ± 0.03	0.15 ± 0.03
cosmics	0	-0.20 ± 0.18	-0.43 ± 1.27
total	$0.92^{+0.40}_{-0.34}$ (uncorr.) ± 0.14 (corr.)	$1.43^{+1.42}_{-0.48}$ (uncorr.) ± 0.28 (corr.)	$1.39^{+1.39}_{-0.48}$ (uncorr.) ± 0.23 (corr.)

Considering MET>150GeV, we observed 9 events when SM predicts 3.7 (+2.2 -0.9) events for 34.3 pb^{-1} . The excess	3
is in eμ and μμ.	
The probability for the SM background to exceed the number of observed events is 14% and 13% for eµ and µµ.	

Limits can still be set on the existence of new physics which produces OS di-leptons (leptons with PT > 20 GeV and MET > 150 GeV): • ee: cross-section x BR x acceptance < 0.09 pb • eµ: cross-section x BR x acceptance < 0.21 pb • μμ: cross-section x BR x acceptance < 0.22 pb

The method is validated with collision data, in a control region where one of the two electrons has ET between 10 GeV and 20 GeV and the other still has E_T above 20 GeV.

• For MET>100 GeV, no event is observed; the estimation is 0.05 ± 0.05 (stat) ± 0.02 (sys) events

			• • • • • • •		
Kac	korniina	leterm	ination	cosmic	muone
Duc	181 Julia			COSIIIC	

 Cosmic muons enter the analysis in: eμ, if a cosmic muons is incident with a collision event μ⁺μ⁻ if both incoming and outgoing is reconstructed within the same event 	$Cuts \\ OS \ e\mu \\ E_T^{miss} > 10 \\ E_T^{miss} > 15 \\ e^{miss} > 15 \\ e^{miss} = 15 \\ e^{mis}$	0GeV 0GeV	Data Es 131 13 4	stimated cosmics -3.14 ± 3.34 0.42 ± 1.07 -0.20 ± 1.18
 Estimation method Use the transverse impact parameter in an additional "quality" cut to select cosmic muons; "cosmic-loose" and "cosmic-tight" (passing this new cut) 	$SS e \mu \\ E_T^{miss} > 80 \\ E_T^{miss} > 10$	GeV 0GeV	5 0 0	0.69 ± 1.04 0 ± 1.17 0 ± 1.17
• obtain cosmic and collider efficiencies for "cosmic-loose"	Cuts	Data	2 cosm	ics 1 cosmic
to also be "cosmic-tight" from calo-stream and MC	OS μμ	12772	9.39 ± 3	3.19 86.63 ± 11.49
 The number of cosmic events in SR are estimated for the eµ and µµ channels using matrix methods. 	$E_T^{muss} > 100 GeV$ $E_T^{miss} > 150 GeV$	13 4	0.03 ± 1 0.01 ± 1	$1.20 -1.39 \pm 1.43$ $1.20 -0.43 \pm 1.27$
Results	SS μμ	3	2.12 ± 1	1.50 -0.29 ± 1.29
• Consistent with zero, but considerable uncertainty	$E_T^{miss} > 80 GeV$	0	0 ± 1.2	20 0 ± 1.24
• Upper bound: Ncos < 1.32 at 68% CL, Ncos < 3.45 at 95% CL	$E_T^{miss} > 100 GeV$	0	0 ± 1.2	20 0 ± 1.24

MC predictions $(34.3 pb^{-1})$						MET>	100GeV
	e±e∓	e [±] µ [∓]	$\mu^{\pm}\mu^{\mp}$			6	Total
tī	3.7±0.3	9.8±0.5	7.0±0.4	Τ		3	Total
Dibosons	0.30 ± 0.02	0.36±0.03	0.61±0.03		tī	0.52	0.5
Drell Yan	0±0	0±0	0±0		Dibosons	0.51	0.1
Z+jets	0.4±0.2	0.4±0.2	1.0±0.3		Drell Yan	0	0
W+jets	0±0	0±0	0±0		Z+jets	0.89	0.5
Dijets	0 ± 0	0±0	0±0		W+jets	0	0
Single Top	0 ± 0	1±0	1±0		Dijets	0	0
Total SM	4.5±0.4	11.3±0.6	9.2±0.6		Single Top	-0.096	0.08
MSSM27	13.8 ± 1.2	4.5±0.7	16.2±1.3		enigie rep	0.070	0.00
Data	4+3.2-1.9	13+4.7-3.6	13+4.7-3.6]	$S_{MC} = 1.$	8±1.1(sy	s.)±0.
-ttbar: s -Diboso after fla - Other with ze - Some estimat flavour	still some, but on: significant avour subtrac s (including Z ero excess in data tion, eµ and μ -subtraction	t subtracts to in all channe tion): nearly cons a relative to S 1, not present	() 320 300 E 280 240 220 200 180 140 120	MSUGRA/CMSSM: tan# ATLAS Prelimin 2-lepton flavour sub	= 3, A = 0, µ>0 Pary Iraction analysis		
	tī Dibosons Drell Yan Z+jets Dijets Single Top Total SM MSSM27 Data -ttbar: s -Diboso after fla - Other with ze - Some estimat	MC predictions $e^{\pm}e^{\mp}$ $t\bar{t}$ 3.7 ± 0.3 Dibosons 0.30 ± 0.02 Drell Yan 0 ± 0 $Z+jets$ 0.4 ± 0.2 $W+jets$ 0 ± 0 Dijets 0 ± 0 Single Top 0 ± 0 Total SM 4.5 ± 0.4 MSSM27 13.8 ± 1.2 Data $4+3.2-1.9$ -ttbar:still some, but-ttbar:significant after flavour subtractOthers (including Z with zeroSome excess in data estimation, eµ and µ flavour-subtraction	MC predictions $(34.3 pb^{-1})$ $e^{\pm}e^{\mp}$ $e^{\pm}\mu^{\mp}$ $t\bar{t}$ 3.7 ± 0.3 9.8 ± 0.5 Dibosons 0.30 ± 0.02 0.36 ± 0.03 Drell Yan 0 ± 0 0 ± 0 $Z+jets$ 0.4 ± 0.2 0.4 ± 0.2 $W+jets$ 0 ± 0 0 ± 0 Dijets 0 ± 0 0 ± 0 Dijets 0 ± 0 1 ± 0 Total SM 4.5 ± 0.4 11.3 ± 0.6 MSSM27 13.8 ± 1.2 4.5 ± 0.7 Data $4+3.2-1.9$ $13+4.7-3.6$ -ttbar: still some, but subtracts to -Diboson: significant in all channer after flavour subtraction - - Others (including Z): nearly cons with zero - Some excess in data relative to S estimation, eµ and µµ, not present flavour-subtraction	MC predictions $(34.3 pb^{-1})$. $e^{\pm}e^{\mp}$ $e^{\pm}\mu^{\mp}$ $\mu^{\pm}\mu^{\mp}$ $t\bar{t}$ 3.7 ± 0.3 9.8 ± 0.5 7.0 ± 0.4 Dibosons 0.30 ± 0.02 0.36 ± 0.03 0.61 ± 0.03 Drell Yan 0 ± 0 0 ± 0 0 ± 0 Z+jets 0.4 ± 0.2 0.4 ± 0.2 1.0 ± 0.3 W+jets 0 ± 0 0 ± 0 0 ± 0 Dijets 0 ± 0 0 ± 0 0 ± 0 Dijets 0 ± 0 0 ± 0 0 ± 0 Single Top 0 ± 0 1 ± 0 1 ± 0 Total SM 4.5 ± 0.4 11.3 ± 0.6 9.2 ± 0.6 MSSM27 13.8 ± 1.2 4.5 ± 0.7 16.2 ± 1.3 Data $4+3.2-1.9$ $13+4.7-3.6$ $13+4.7-3.6$ -ttbar: still some, but subtracts to zero -Diboson: significant in all channels, also after flavour subtraction - Others (including Z): nearly consistent with zero -Some excess in data relative to SM estimation, eµ and µµ, not present after flavour-subtraction	MC predictions $(34.3 pb^{-1})$ $e^{\pm}e^{\mp}$ $e^{\pm}\mu^{\mp}$ $\mu^{\pm}\mu^{\mp}$ $t\bar{t}$ 3.7 ± 0.3 9.8 ± 0.5 7.0 ± 0.4 Dibosons 0.30 ± 0.02 0.36 ± 0.03 0.61 ± 0.03 Drell Yan 0 ± 0 0 ± 0 0 ± 0 Z+jets 0.4 ± 0.2 0.4 ± 0.2 1.0 ± 0.3 W+jets 0 ± 0 0 ± 0 0 ± 0 Dijets 0 ± 0 0 ± 0 0 ± 0 Dijets 0 ± 0 0 ± 0 0 ± 0 Dijets 0 ± 0 0 ± 0 0 ± 0 Single Top 0 ± 0 1 ± 0 1 ± 0 Total SM 4.5 ± 0.4 11.3 ± 0.6 9.2 ± 0.6 MSSM27 13.8 ± 1.2 4.5 ± 0.7 16.2 ± 1.3 Data $4+3.2-1.9$ $13+4.7-3.6$ $13+4.7-3.6$ 300 -ttbar: still some, but subtracts to zero 200 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300 300	MC predictions $(34.3 pb^{-1})$ $e^{\pm}e^{\mp}$ $e^{\pm}\mu^{\mp}$ $\mu^{\pm}\mu^{\mp}$ $t\bar{t}$ 3.7 ± 0.3 9.8 ± 0.5 7.0 ± 0.4 Dibosons 0.30 ± 0.02 0.36 ± 0.03 0.61 ± 0.03 0.61 ± 0.03 Drell Yan 0 ± 0 0 ± 0 0 ± 0 0 ± 0 $Z+jets$ 0.4 ± 0.2 0.4 ± 0.2 1.0 ± 0.3 $Z+jets$ Dijets 0 ± 0 0 ± 0 0 ± 0 0 ± 0 Dijets 0 ± 0 0 ± 0 0 ± 0 $Dillets$ $Drell Yan$ Z+jets $Dijets$ 0 ± 0 0 ± 0 0 ± 0 $Dillets$ Single Top 0 ± 0 1 ± 0 1 ± 0 1 ± 0 $Dillets$ Total SM 4.5 ± 0.4 11.3 ± 0.6 9.2 ± 0.6 $Single Top$ MSSM27 13.8 ± 1.2 4.5 ± 0.7 16.2 ± 1.3 $S_{mc} = 1.4$ Data $4+3.2-1.9$ $13+4.7-3.6$ $13+4.7-3.6$ $S_{obs.} = 1.98\pm0.15$ -tibar: still some, but subtracts to zero-Diboson: significant in all channels, also after flavour subtraction- Others (including Z): nearly consistent with zero $41ALAS$ Prelimin 240 Some excess in data relative to SM estimation, e_{μ} and μ_{μ} , not present after flavour-subtraction 200 Methods 200 100	MC predictions $(34.3 pb^{-1})$

Conclusions

I presented the details and results of three different searches for two-lepton, high missing transverse energy events. These three searches when carried out in parallel are sensitive to a variety of supersymmetric decays. These analyses observed no significant deviations from Standard Model predictions. During the 2011 we hope to collect a fb^{-1} of data. In this way, we'll be able to extend the Tevatron limits on SUSY parameter space...

References

The ATLAS Collaboration, Search for an excess of events with an identical flavour lepton pair and significant missing transverse momentum in \sqrt{s} = 7 TeV proton-proton collisions with the ATLAS detector, ArXiv:1103.6208, submitted to EPJC

The ATLAS Collaboration, Search for supersymmetric particles in events with lepton pairs and large missing transverse momentum in \sqrt{s} = 7TeV proton-proton collisions at the ATLAS experiment , ArXiv:1103.6214, submitted to EPJC Letters

Massimiliano Uslenghi on behalf of the ATLAS Collaboration **Pavia University and INFN**

