

Measurement of Top Quark Pairs Production Cross-Section in the Lepton+Jets Channel at $\sqrt{s}=7$ TeV at the LHC with the ATLAS Experiment

Riccardo Di Sipio, University of Bologna and INFN

Outline

- Introduction
- The ATLAS detector
- Signal and backgrounds
- Event Selection
- Cross-section measurements by ATLAS
 - Multivariate, Cut and count
- Results
- Conclusions

Introduction

- Important test for both pQCD and the ATLAS detector!
- All parts of the detector must be understood
- Major background in BSM (e.g. SUSY) and Higgs searches
- Deviations in *ttbar xs* could be hints of New Physics (e.g. Z'→ttbar)
- NNLO prediction:

 $\sigma_{t\bar{t}}^{NLO} = 165^{+11}_{-16} \ pb$

• <u>Previous</u> measurement with 2.9 *pb*⁻¹:

$$\sigma_{t\bar{t}} = 145 \pm 31(stat)^{+42}_{-27}(syst) \ pb$$
[CERN-PH-EP-2010-064]

200

150

100

5

4

6.5

6

2

3

10

7.5

8

7

√*s* [TeV]

The ATLAS detector

- Multi-purpose detector for *pp* and *AA* physics at the LHC
- ID: pixel + strips + straw tubes (TRT), 2T solenoidal *B* field
- Cal: LAr sampling accordion geometry (ECAL) + Tile (HCAL)
- Air-core toroids, low multiple scattering for muons
- Muon spectrometer: 3 layers of tracking chambers + trigger

Riccardo Di Sipio

Data Samples in 2010

- $\sqrt{s} = 7$ TeV pp runs
 - Peak luminosity 2×10³² cm⁻²s⁻¹
 - <pileup>=3
 - $\delta L = 3.4\%$
- Total delivered 48.1 pb⁻¹
- Total recorded 45.0 pb⁻¹
- ATLAS efficiency 93.6%
- Good run list for top quark studies 35.5 pb⁻¹

Event topology

	Br	Backgrounds	Trigger	Reco
di-leptonic	1/9	Clean	\checkmark	Mass issues
semi-leptonic	4/9	W+jets, QCD	\checkmark	Complete!
all-hadronic	4/9	QCD	×	Combinations

Backgrounds

- QCD and W backgrounds estimated from data
- Z+jets, Single top, WW/ZZ/WZ from MC simulations
 - Pile-up effects taken into account

Analysis Objects

kin cut on leptons and jets: pT>20 GeV, $|\eta| < 2.5$

Electrons

- Medium PID cuts
- No "crack" region $1.37 < |\eta| < 1.52$
- Isolation ΣE_T(r≤0.2) < (4 + 0.023 E_T) GeV

<u>Jets</u>

- Anti-k_T, R=0.4 from topological clusters
- Energy calibrated to hadronic scale (p_T, η)
- $\Delta R(\text{ele, jet}) > 0.2$
- b-tagged SV0 *w* > 5.85

<u>Muons</u>

- Combined tracks ID + MS
- Isolation
 - ΣE_T(r≤0.4) < 4 GeV
 - Σp_T(r≤0.4) < 4 GeV
- ΔR(jet, muon) > 0.4

Missing Energy

- From topological clusters.
- "Jet" cells calibrated had scale
- "Electron" and "muon" cells replaced by reco object E_T

b-Tagging

- 2010 choice: SV0 tagger
 - Long B hadrons lifetime ⇒ identification of secondary vertex
 - b-Tag = Sec vtx \oplus L/ σ (L) resulting in ϵ_{btag} = 50% in MC ttbar events

y

- Calibrated using a lower efficiency "soft-lepton" tagger
 - Soft muon inside jet from semileptonic decays of *B* hadrons
- Calibration of more efficient taggers underway...

Event Selection

- Depending on the analysis, one asks 3, 4, ≥4, ≥5 jets and the presence of a b-tagged jet
- e.g. \geq 4 & 1 b-tag results in ~ 6% efficiency on signal

ttbar I+jets Cross-section Measurements by ATLAS

- Pre-tag analyses:
 - Multivariate with 3 variables (baseline)
 - 1D lepton η fit
 - 1D $\Delta\eta_{max}(l,jet)$ fit
 - Cut and count
- Tagged analyses:
 - Multivariate with 4 variables (baseline)
 - Top mass fit in the 3- and ≥4-jets samples (16 parameters)
 - Top mass profile fit in the 3-, 4- and \geq 5-jets samples (profile likelihood)
 - Cut and count
- Measurements performed in the di-lepton and full-hadronic channel as well

Baseline Multivariate Analyses

- Projective likelihood based on η_i , Q_i and aplanarity
- 4 channels (e/µ + 3-, ≥4-jets)
- Independent of b-tagging
 - Less systematics but worse S/B ratio
- δσ ~ 15%

$$\sigma_{t\bar{t}} = 171 \pm 17(stat)^{+20}_{-17}(stat) \pm 6(lumi$$

- Profile likelihood based on η_I , $H_{T,3p}$, b-tag weight and aplanarity
- 6 channels ($e/\mu + 3-, 4-, \ge 5$ -jets)
- Fit extracts σ_{tt} and 15 parameters
- δσ ~ 13%

Ratio Data/Fit $\sigma_{t\bar{t}} = 186 \pm 10(stat)^{+21}_{-20}(stat) \pm 6(lumi)$

b-tagging

w/ b-tagging

240 Entries 200

160

120

80

40

Cut and Count Analysis

• Simplest approach: just count events and apply the cross-section formula:

$$\sigma_{t\bar{t}} = \frac{N_{sig}}{\epsilon \cdot \mathcal{B} \cdot \mathcal{L}} = \frac{N_{obs} - N_{bkg}}{\epsilon \cdot \mathcal{B} \cdot \mathcal{L}}$$

- Common ground for other top-related studies (e.g. ttbar resonances)
- Largest uncertainty: $\delta\sigma$ ~20%
- Statistical error ~10%
- Main systematics: ISR/FSR, Jet energy scale, W+jets normalization

QCD background

Riccardo Di Sipio

ttbar cross-section @ ATLAS - IFAE, Perugia 27-29 / 04 / 2011

W+jets background

- Same final state as signal, dominated by W + *bb/cc* + jets
- MC prediction has large uncertainty
- W/Z ratio method in the *pre-tag* sample:

tagged µ+1-jet

$$W_{datas}^{\geq 4jets} = W_{data}^{1jet} \left(\frac{Z^{\geq 4jets}}{Z^{1jet}} \right)_{data} \cdot C_{MC} \qquad C_{MC} = \frac{(W^{\geq 4jets}/W^{1jet})_{MC}}{(Z^{\geq 4jets}/Z^{1jet})_{MC}}$$
• Extra-solution to tagged sample applying MC-driven correction factor:
• extra-solution with the same $\int_{z \to z}^{z \to z} \int_{z \to z}^{z \to z}$

Reconstruction of the Hadronic Top Quark

- Are we really reconstructing top quarks?
- Simplest method: choose 3 jet combination with maximum pT

Calculation of the cross-section

$$\sigma_{t\bar{t}} = \frac{N_{obs} - N_{bkg}}{\epsilon \cdot \mathcal{B} \cdot \mathcal{L}}$$

• Top mass *m*_t=172.5 GeV

Acceptance ε estimated from MC

• Luminosity uncertainty 3.4%

Pretag	e+jets	µ+jets	Tagged	e+jets	μ+ <i>jets</i>
ttbar (MC)	189.7±45.9	247.8±69.9	ttbar (MC)	126.8±16.6	182.0±21.8
W+jets (DD)	156.7±38.1	309.6±61.1	W+jets (DD)	12.2±5.3	39.5±14.4
QCD (DD)	22.0±11.0	51.3±15.4	QCD (DD)	8.6±9.4	13.0±3.9
Total bkg	210.3±41.3	405.2±65.1	Total bkg	29.2±10.9	64.0±15.2
Observed	400	653	Observed	156	246

Combination of the the two channels (c&c only)

- Method based on Bayes' theorem
- - Likelihood takes into account the dependence of the xs on the systematics (nuisance parameters)
- Marginalization performed with a Markov Chain Monte Carlo
- Results agree with frequentist method

 $P(A|B) = \frac{P(B|A)P(A)}{P(B)}$ $p_1(\theta|D_1) \propto L(D_1|\theta)p_0(\theta)$ $p_2(\theta|D_2) \propto L(D_2|\theta)p_1(\theta) = L(D_2|\theta)L(D_1|\theta)p_0(\theta)$

Channel	XS [pb]
e + jets pre-tag	$159 \pm 17 {}^{+50}_{-44} \pm 7$
μ + jets pre-tag	$148 \pm 16 {}^{+47}_{-47} \pm 7$
pre-tag combined	$154 \pm 11 {}^{+48}_{-43} \pm 7$
e + jets tagged	$153 \pm 16 {}^{+41}_{-27} \pm 6$
μ + jets tagged	$159 \pm 14 {}^{+35}_{-27} \pm 6$
tagged combined	$156 \pm 10 {}^{+34}_{-28} \pm 6$

Riccardo Di Sipio

ttbar cross-section @ ATLAS - IFAE, Perugia 27-29 / 04 / 2011

Results

- Multivariate analysis has the smallest uncertainty $\delta\sigma \sim 13\%$
- Cut and count method $\delta\sigma\sim 20\%$
- Combination of the measurements based on frequentist method

ttbar cross-section @ ATLAS - IFAE, Perugia 27-29 / 04 / 2011

Conclusions

- Top quark production cross-section measurement performed by the ATLAS experiment with the full 2010 statistics of 35.5 pb⁻¹
- Agrees with the Standard Model pQCD prediction
- Already in the systematics-dominated regime
 - lepton+jets $\delta\sigma$ ~13%
 - Combination with di-leptonic channels $\delta\sigma$ ~10%
 - $\delta\sigma$ ~theory, Tevatron

Expected >1 *fb*⁻¹ in 2011 Now entering top quark precision era!

Backup slides

References for ATLAS ttbar cross-section measurements

- Top quark pair cross-section (2.9 pb⁻¹) arXiv:1012.1792
- Single lepton pre-tag ATLAS-CONF-2011-023
- Single lepton b-tag ATLAS-CONF-2011-035
- Di-lepton ATLAS-CONF-2011-034
- Combination ATLAS-CONF-2011-040

QCD background - µ Channel

- Semileptonically decaying quarks with sufficiently isolated lepton (nonprompt)
- Fake (π/K punch-through)

$$N^{loose} = N^{loose}_{real} + N^{loose}_{fake}$$
$$N^{tight} = N^{tight}_{real} + N^{tight}_{fake}$$
$$= \epsilon_{real} N^{loose}_{real} + \epsilon_{fake} N^{loose}_{fake}$$

- Solve for N^{tight}fake
- ϵ_{real} from $Z \rightarrow \mu \mu$
- ε_{fake} from control samples enhanced in fake leptons

Systematic uncertainties for the cross-section

	Source	$\Delta\sigma(e)/\sigma[\%]$	$\Delta\sigma(\mu)/\sigma[\%]$	$\Delta\sigma(e)/\sigma[\%]$	$\Delta\sigma(\mu)/\sigma[\%]$
		pre-tag	pre-tag	tagged	tagged
\rightarrow	Statistical error	10.4	10.2	9.9	8.6
	Object selection				
	Lepton Reco, ID, Trigger	+3.8/-3.5	+1.0/-0.9	+3.8/-3.5	+1.0/-0.9
\rightarrow	Jet energy Reco	+14.1/-11.8	+14.5/-12.3	+11.4/-9.6	+9.9/-8.5
	<i>b</i> -tagging	-	-	+11.7/-8.4	+11.7/-8.4
	Background rate				
	QCD norm	4.4	6.1	6.2	0.7
\rightarrow	W+jets norm	19.5	23.4	4.1	7.7
	Other bkg norm	5.7	6.1	0.7	0.7
	Signal simulation				
\rightarrow	ISR/FSR	+10.6/-6.5	+10.3/-4.6	+8.9/-6.7	+8.3/-5.9
	PDF	1.7	1.4	1.9	1.6
	Parton Shower	+4.8/-4.4	+4.0/-3.7	+4.8/-4.4	+4.0/-3.7
	NLO generator	+7.1/-6.2	+5.3/-4.8	+7.0/-6.1	+2.8/-2.6
	Pile-up	1.2	1.2	0.6	0.8
	Sum systematics	+28.9/-26.2	+31.4/-28.9	+22.2/-18.4	+19.8/-16.2
	Integrated Luminosity	+3.8/-3.6	+3.8/-3.6	+3.5/-3.3	+3.5/-3.3

Projective and profile likelihoods

$$L(D|\theta) = \frac{p(D|S, \theta_i)}{p(D|S, \theta_i) + \sum_k p(D|B_k, \theta_i)} \text{ Projective likelihood}$$

$$L_p(\theta) = L(\theta, \hat{\nu}_{\theta}) = \sup_{\nu} L(\theta, \nu)$$
 Profile likelihood

 $\hat{\nu}_{\theta} = \max (\hat{\nu}_{\theta} - \hat{\nu}_{\theta})$ maximum likelihood of *nuisance* parameter \mathbf{v} for a fixed *model* parameter $\mathbf{\theta}$

Aplanarity

$$S^{\alpha\beta} = \frac{\sum_{i} p_{i}^{\alpha} p_{i}^{\beta}}{\sum_{i} |p_{i}|^{2}} \xrightarrow{\text{sphericity}}_{\text{tensor}} \Rightarrow \text{eigenvalues}$$

$$A = \frac{3}{2}\lambda_3$$

 $S_T = 2\frac{\lambda_2}{\lambda_1 + \lambda_2}$

isotropic A=1/2 planar A=0

$$S = \frac{3}{2}(\lambda_2 + \lambda_3)$$

QCD background - e Channel

- Jets with high EM fraction (fake electrons)
- Semileptonically decaying quarks with sufficiently isolated lepton (non-prompt)
- Fitting method with "anti-electrons":
 - Loose electrons failing track quality cuts
 - Fill template histograms
 - Fit E_T^{miss} template in sideband (e.g. $E_T^{miss} < 20 \text{ GeV}$)

ttbar cross-section @ ATLAS - IFAE, Perugia 27-29 / 04 / 2011

+2-jets

ATLAS

500

QCD Background

ttbar cross-section @ ATLAS - IFAE, Perugia 27-29 / 04 / 2011

W + jets factors

Channel	Electron Muon		
sample	C_{I}	МС	
default	1.20 ± 0.10	1.03 ± 0.07	
δR	$1.04 - 1.05 \pm 0.06$	$0.96 - 0.99 \pm 0.05$	
p_T	$0.98 - 1.14 \pm 0.08$	$0.92 - 1.07 \pm 0.07$	
ktfac	$0.99 - 1.02 \pm 0.06$	$0.95 - 0.99 \pm 0.06$	
iqopt	1.02 ± 0.05	0.98 ± 0.04	

Table 7: Variation of the parameter C_{MC} in Eq. 6 from varying various parameters of Alpgen Monte Carlo: the δR and p_T of the matching between the parton shower and matrix element calculations, and the renormalization scale parameters. For each parameter variation, the range of values obtained is shown.

Uncertainty on signal acceptance

rel.uncertainty(%)	<i>e</i> +jets	μ +jets	<i>e</i> +jets	μ +jets
	pre-tag	pre-tag	tagged	tagged
b/c-tagging efficiency	0	0	+9.1/-10.4	+9.2/-10.5
light jets tagging efficiency	0	0	±0.2	±0.2
lepton trigger, reconstruction and selection	±3.6	±0.9	±3.6	±0.9
jet energy scale	+9.0/-9.1	+7.8/-8.7	+8.9/-9.0	+7.6/-8.5
jet energy resolution	±0.2	±0.2	±0.4	±0.4
jet reconstruction efficiency	±2	±2	±3	±3
electron energy scale	+0.2/-0.6	0	+0.2/-0.6	0
electron energy resolution	±0.2	0	±0.2	0
muon momentum scale	0	±0.3	0	±0.3
muon momentum resolution	0	±0.1	0	±0.1
ISR/FSR	+7.0/-9.6	+4.8/-9.3	+7.2/-8.2	+6.3/-7.7
NLO generator (MC@NLO v.s. Powheg)	±6.6	±5.0	±6.5	±2.7
Parton Shower generator (HERWIG <i>v.s.</i> PYTHIA)	±4.6	±3.8	±4.6	±3.8
PDFs	±1.7	±1.4	±1.9	±1.6
Pile up	-1.2	-1.2	-0.6	-0.8
ТОТ	+19.2 -15.3	+15.0 -15.3	+14.4 -19.9	+16.1 -15.5

Table 15: Contributions to the uncertainty on the estimated $t\bar{t}$ signal acceptance ϵ , for electron and muon channels separately, before and after *b*-tagging, expressed as relative percent uncertainty.

$$\begin{cases} \sigma_{t\bar{t}}^{pretag} = 154^{+52}_{-47} \ pb \\ \sigma_{t\bar{t}}^{tagged} = 156^{+37}_{-29} \ pb \end{cases}$$

$$\begin{aligned} \sigma_{t\bar{t}}^{pretag} &= 154 \pm 11^{+48}_{-43} \pm 7 \ pb \\ \sigma_{t\bar{t}}^{tagged} &= 156 \pm 10^{+34}_{-28} \pm 6 \ pb \end{aligned}$$

