Measurement of the Underlying Event Activity at the LHC with $\sqrt{s}=7 \mathrm{TeV}$ and Comparison with $\sqrt{s}=0.9 \mathrm{TeV}$ Andrea Lucaroni INFN Perugia, CERN On behalf of the CMS Collaboration

Introduction

In a proton-proton hard process the hadronic final state can be described as the superposition of different contribution:

-production of the partonic hard scattering initial and final state radiation "beam-beam remnants" (BBR) resulting from the hadronization of the partonic constituents that did not participate in other scatters
hadrons produced in additional multiple parton interaction (MPI).

MPI and BBR form the "Underlying Event" (UE), which cannot be uniquely separated from initial and final state radiation.

The goal is to understand the UE kinematics and dynamics (the energy dependence evolution).

A good description of UE properties is needed for a proper final state modelling and hence for any precision SM measurement and new physics search

Monte Carlo description

We present 0.9 and 7 TeV data, the distribution are fully corrected for detector effects.
To regularize the formal divergence of the leading orden parton scattering PYTHIA introduces a pT cut off parameters (p^{4}):
$1 / \mathrm{p}_{\mathrm{T}}{ }^{-1} 1 /\left(\mathrm{p}^{2} \mathrm{~T}^{+} \mathrm{p}^{2} \mathrm{TO}^{2}\right)^{2}$
$\mathrm{P}^{2}{ }_{\mathrm{TO}}$ is parameterized as:
$\mathrm{p}^{2} \mathrm{TO}(\sqrt{\mathrm{s}})=\mathrm{p}_{\mathrm{TO}}^{2}\left(\sqrt{\mathrm{~s}_{0}}\right)\left(\sqrt{\mathrm{s}} / \sqrt{\mathrm{s}_{0}}\right)$ where $\sqrt{ } \mathrm{s}_{0}$ is the reference energy (1.8 TeV) at which p^{2} т is determined and ε is a parameter describing of the energy dependence.
PYTHIA 6 tunes
are all compatible with data taken at CDF

Pythia 6.420

Tune	рто	ε	notes/other features
z2	$1.8 \mathrm{GeV} / \mathrm{c}$	0,27	Tool using LHC data, new PYTHIA MPI model and CTEQ6L
Z1	1,9 GeV/c	0,27	Tool using LHC data, new PYTHIA MPI mod and CTEQ5L
D6T	$1.8 \mathrm{GeV} / \mathrm{c}$	0,16	Energy dependence from CTEQ6L, tune pre LHC

Pythia 8.145

Tune	рто	ε	notes/other features
C4	2.0 GeV/c	0,20	Tool using LHC data, new PYTHIA MPI model with rescatering and CTEQ6L1

Reference: R. Corke and T Sjostrand, "Interleaved Parton Showers and Tuning Prospects", arXiv:1011.1759v1, 2010

The CMS Full Silicon Tracker

The Compact Muon Solenoid is a general purpose detector designed to study proton proton and ion-ion collisions at the LHC.
The Silicon Tracker, inside the 4 Tesla superconducting solenoid, is designed for the best reconstruction of charged particles (momentum, position and decay vertices) Reference CMS Colaboration " \quad | 1,4 Reference: CMS Collaboration, "Tracking and Vertexing Results from First Collisions", CMS PAS TRK-10-001 (2010)

The CMS Tracker is made of a Silicon Pixel vertex detector and a Silicon Microstrip Tracker

- $(100 \times 150) \mu \mathrm{m}^{2}$ pixel, the resolution
is $10(\mathrm{r}) \times 20(\mathrm{z}) \mu \mathrm{m}$
320-500 um thick microstrip sensors the resolution change from $25 \mu \mathrm{~m}$ to $140 \mu \mathrm{~m}$
Track momentum resolution is: $\sigma(\mathrm{pT}) / \mathrm{pt} \sim 2 \%$ for track with k 1.4

Event and Track Selection

Event Selectior

-Beam Scintillator Counter (BSC) (L1) -Good primary vertex
-presence of leading track-jet (offline) Track Selection:
-Kinematics cuts $\mathrm{p}_{\mathrm{T}}>0.5 \mathrm{GeV} / \mathrm{c},|\eta|<2$ -Association of tracks to primary verte> -Good quality tracks (relative pT error < 5 \%)

Corrected for detector
The distribution present are corrected, unfolding the detector effect

N. Events	$1 \mathrm{GeV} / \mathrm{c}$	$3 \mathrm{GeV} / \mathrm{c}$	$20 \mathrm{GeV} / \mathrm{c}$
$7 \mathrm{TeV}\left(\times 10^{3}\right)$	18×10^{3}	6×10^{3}	19
$0.9 \mathrm{TeV}\left(\times 10^{3}\right)$	5×10^{2}	783	5.8

Analysis strategy

Main observables are: $\mathrm{d}^{2} \mathrm{~N}_{\text {ch }} / \mathrm{d} \eta \mathrm{d}(\Delta \phi) \quad$ charged multiplicity

Reconstructed tracks are used as input for a SISCone clustering algorithm, forming track-jets. The leading track-jet provides an energy scale and defines a direction in the ϕ plane.

The azimuthal distance between track and leading track-jet direction define 3 regions (same size):

Toward	$\|\Delta \phi\|<60^{\circ}$
Away	$\|\Delta \phi\|>120^{\circ}$
Transverse	$60^{\circ}<\|\Delta \phi\|<120^{\circ}$

$d^{2} \Sigma p T / d \eta d(\Delta \phi)$ energy density UE contribution is maximized in the transverse region

Systematic uncertainties

Several sources of systematic uncertainties have been considered
$\begin{array}{lll}- \text { Track Selection (evaluated by applying different cuts) } & 7 \mathrm{TeV} & \text { Er.Total } \\ \mathrm{d}^{2} \mathrm{~N}_{\mathrm{cc}} / \mathrm{dnd}(\Delta \phi) & (\mathrm{pr}=20 \mathrm{GeV} / \mathrm{c}) & 1.5 \%\end{array}$ -Contribution from misalignment, beam spot position, $\quad d^{2} N_{c h} / d \eta d(\Delta \phi)(p T=20 \mathrm{GeV} / \mathrm{c}) \quad 1.5 \%$ dead channels map and material budget $\quad d^{2} \Sigma p T / d \eta d(\Delta \phi)(p t=20 \mathrm{GeV} / \mathrm{c})$ 1.5\%

- Correction different model

Trigger uncertainty (complementary strategy)
 $d N_{\text {ev }} / \mathrm{d} \mathrm{\Sigma pt}(\Sigma p t=4.6 \mathrm{GeV} / \mathrm{c})$ pT (pT=1 GeV/c)

Results

The inner error bars indicate the statistical uncertainties affecting the outer error bars represent the statistical and systematic uncertainties added in quadrature statistical errors dominate at large values of the observables.

Very good description of the most distribution at $v_{s}=7$ and 0.9 TeV is provided by the Tune $\mathrm{Z1}$
soft
peripheral collision independent $\sim \sqrt{s}$ semi-soft
mix central and peripheral collision hard
mainly central collision,
hight parton density regions for the two Js domains

Conclusion
Two components are visible for both UE observables : a fast rise for $p_{T}<8 \mathrm{GeV} / \mathrm{c}$ at 7 TeV and for $\mathrm{p}<4 \mathrm{GeV} / \mathrm{c}$ at 0.9 TeV , attributed mainly to the increase of MPI activity, followed by a plateau-like region with nearly constant average number of selected particles and slow increase of $\Sigma p \mathrm{p}$.

The strong growth of UE activity with \sqrt{s} is also striking in the comparison of the normalized distribution of charge particle multiplicity and of Scalar $\sum \mathrm{PT}^{2}$ as well as in pT spectra.

The prediction of the new tunes Z 1 and $4 C$ have been compared to the measurements. The models differ in the PDF description, in the implementation of radiation and multiple parton interaction, in particular in the Is dependence. Tunes adopting CTEQ6L may need a smoother increase of the pT-cut-off with increasing energy with respect CTEQ5L

Ratio MC/DATA of normalized multiplicity distribution, normalized average $\sum p T T$ and $p T$ spectra

The distributions are overall rather well described by the selected MC models over several orders of magnitude, in presence of a hard scale (a leading track-jet with $p \mathrm{P}>20 \mathrm{GeV} / \mathrm{c}$), the Z 1 and 4 C tunes describe the data remarkably well in view of the steeply falling character of the distribution. The distributions within 10-15\% over most of the domain, except for 4C for small Nch (Nch < 5) and इpt. Data description by D6T is worse.

Normalized multiplicity distribution, normalized average Σp_{T} and p_{T} Spectra

An increase of the scale implies an increasing contribution of central interactions, the central region with higher parton density and larger MPI probability is wider at larger $\sqrt{ }$. The evolution of the UE activity at 7 TeV and 0.9 TeV is remarkably well described by the tune Z 1 .

References

1] CMS Collaboration, "The underlying event in proton proton collision at 900 GeV " EPJC Volume 70, Issue 3 (2010), Page 555 2] CMS Collaboration, "Measurement of the Underlying Event Activity at the LHC with $\sqrt{s}=7 \mathrm{TeV}$ and comparison with $\sqrt{s}=0.9$ TeV " CMS-QCD-10-010 (2011)

