Ricerca di decadimenti rari del B con energia mancante a SuperB

INFN

SUDerb

Elisa Manoni (INFN Perugia)

Incontri di Fisica delle Alte Energie Perugia 27-29 Aprile 2011

INFN

Super

Outline

- Theoretical motivations
- Experimental analysis strategy
- Current experimental status
- Expected sensitivity in SuperB
- Conclusions

• All results should be considered as PRELIMINARY

Theoretical motivations : $B \rightarrow K^{(*)}vv$ INFN Super Standard Model (SM) prediction (TUM-HEP-709-09) : (theoretical errors only) B(B→Kvv)=(4.5±0.7)x10⁻⁶ (1-2η)ε² 0 0.4 $B(B \rightarrow K^* \nu \nu) = (6.8 \pm 1.1) \times 10^6 (1 \pm 1.31 \eta) \epsilon^2$ 0 0.2 $F_{I}(B \rightarrow K^* \nu \nu) = (0.54 \pm 0.01) (1 + 2\eta) / (1 + 1.31\eta)$ 0 η 0.0 SM: $(\eta, \epsilon) = (0, 1)$ -0.2 $\mathcal{H} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* (\mathcal{C}_L^{\nu} \mathcal{O}^{\nu}{}_L + \mathcal{C}_R^{\nu} \mathcal{O}^{\nu}{}_R) + h.c.$ -0.40.0 0.5 1.0 1.5 2.0 2.5 $\epsilon = \frac{\sqrt{|C_L^{\nu}|^2 + |\overline{C_R^{\nu}}|^2}}{|(C_{\tau}^{\nu})^{SM}|}$ W_{S}^{S} $\eta = \frac{-Re(C_L^{\nu}C_R^{\nu*})}{|C_L^{\nu}|^2 + |C_R^{\nu}|^2}$ b t, cNew Physics (NP) effects 0

1.5

1.0

0.5

-1.0

-1.5

0.0

 $-0.5 B \rightarrow K \nu \nu$

0.5

1.0

1.5

e

2.0

η

3.0

F,

 $B \rightarrow K^* \nu \nu$

2.5

3.0

- Non Standard Z-couplings
- New sources of missing energy

Theoretical motivations : $B \rightarrow lv$

• SM prediction

$$\mathcal{B}(B^- \to \ell^- \nu_\ell) = \frac{G_F^2 m_B m_\ell^2}{8\pi} \left(1 - \frac{m_\ell^2}{m_B^2}\right)^2 f_B^2 |V_{ub}|^2 \tau_B$$

- With this SM inputs:
 - $O |V_{ub}| = (4.32 \pm 0.33) \times 10^4 \text{ (HFAG)}$
 - $f_B = (190 \pm 13) \text{ MeV} (PRD80,014503,2009)$
 - $\tau_{\rm B} = (1.638 \pm 0.011) \text{ ps} (\text{PDG})$
 - $\mathcal{B}(B \to \tau \nu)_{SM} = (1.20 \pm 0.20) \times 10^4$
 - $\mathcal{B}(B \rightarrow ev)_{SM} \approx O(10^{-7})$
 - $\mathcal{B}(B \rightarrow \mu \nu)_{SM} \approx O(10^{-12})$

 B^+ U V_{ϱ}

• 2 Higgs Doublet Model:

$$\mathcal{B}(B^- \to \ell^- \nu_\ell) = \mathcal{B}(B^- \to \ell^- \nu_\ell)_{SM} \left(1 - \tan^2 \beta \frac{m_B^2}{m_H^2}\right)^2$$

- B_{reco} side: full/partial reconstruction of hadronic/semileptonic B final states
- B_{sig} side: use tracks and neutrals not involved in the reco side reconstruction and look for a K^(*)/lepton not accompanied by additional (charged or neutral) particles + missing energy
- RECOIL TECHNIQUE @ b-FACTORIES → search for rare decays (B≤O(10⁵)) with MISSING ENERGY, NOT FEASIBLE @ HADRONIC MACHINE

0

Recoil technique(II)

- Aim: collect as many as possible reconstructed B mesons to study the recoil property
- Reconstruction steps:
 - reconstruct D^(*) meson in hadronic modes
 - add a high momentum lepton or $X = n\pi mK pK_S q\pi^0$ with $n+m+p+q\leq 6$

Analysis steps

Once the B_{reco} has been reconstructed:

- search for signal signature in the recoil
- B_{reco} - B_{sig} charge correlation and no extra-trks
- cut on event-shape and kinematic variables
- most discriminant variables

P_{miss} = E_{beam} - E(reco neutrals and tracks)
 E_{extra} = Extra neutral energy in Elettr.
 Cal (EMC) not associated to B_{sig} or B_{reco}

- Signal yield extraction
 - Cut-and-count analysis
 - Fit to E_{extra}
 - combine discriminant variables in a Neural Network and fit output distribution
- Systematics
 - largely dominated by MC statistics (i.e. PDF modeling)
 - irreducible syst important for $\mathcal B$ measurement at high statistics

Current experimental status

B→K*vv: BaBar HAD+SL recoil combined (PRD78,072007,2008) (used for SuperB extrapolation) $\mathcal{B}(B^+ \rightarrow K^{*+}vv) \le 8.0 \ge 10^{-5}$ $\mathcal{B}(B^0 \rightarrow K^{*0}vv) \le 12.0 \ge 10^{-5}$

- B \rightarrow Kvv: Belle HAD recoil (PRL99,221802,2007) $\mathcal{B}(B^+ \rightarrow K^+ vv) < 1.4 \ge 10^{-5}$ $\mathcal{B}(B^0 \rightarrow K_S vv) < 1.6 \ge 10^{-4}$
 - used for SuperB extrapolation: BaBar SL Recoil Analysis (PRD82,112002,2010) $\mathcal{B}(B^+ \rightarrow K^+ v) < 5.6 \ge 10^{-5}$
- B $\rightarrow \tau v$: HFAG world average B(B⁺ $\rightarrow \tau^+ v$) = (1.64 ± 0.34)x10⁻⁴

INFN

SuperB

• used for SuperB extrapolation: BaBar HAD Recoil Analysis (preliminary hep-ex:1008.0104) $\mathcal{B}(B^+ \rightarrow \tau^+ \nu) = (1.80^{+0.57} - 0.54 \pm 0.26) \times 10^{-4}$

From B-factories to SuperB: strategy

- Apply cut-and-count analysis "a-la-BaBar"
 - use SuperB Fast Simulation, most relevant machine backgrounds included
- Evaluate gain on signal efficiency and background rejection due change in boost
- Evaluate gain in efficiency due to improvements in detector design. Two additional components under study
 - Particle Identification device in forward region (FWD PID)
 - Sampling Electromagnetic Calorimeter in the backward region (BWD EMC)
- Consider BaBar results
 - signal and background yields, signal efficiencies, normalizations
- Extrapolate to SuperB luminosity (75 $ab^{-1} \sim 5$ years of data taking)
 - account for efficiency changes
 - $B \rightarrow K^* vv$: assume syst error ~ stat error
 - $B \rightarrow \tau v$: account for irreducible syst

What's new in SuperB : Boost

start from BaBar experience (and re-usable parts) to obtain equal or better performances in an higher background environment and with different beam conditions (boost)

Lower boost (from $\beta\gamma=0.56$ to 0.24): higher geometrical acceptance 0 PRELIMINARY

+20% gain in reconstruction efficiency 0

INFN

Superi

0

-10% bkg reduction due to cuts on tracks multiplicity 0

What's new in SuperB: FWD PID

Possibility of PID device in the FWD region under study

- one option : FWD Time Of Flight (TOF)
- Single channel time resolution $\sigma_t \sim 50$ ps
- Expect 3-4 σ K- π separation @ 3 GeV
- Impact of FDW TOF
 - ~ 5% Kaons in the Fwd region, recuperate K with p_K >0.6 GeV

• +2.5-5% gain in signal selection efficiency, background efficiency ~ unchanged

What's new in SuperB: BWD EMC

- Possibility of EMC device in the BWD region under study
 - PB-scintillator sandwich (12 X0)
 - Resolution $\sigma(E)/E = \frac{14\%}{(E(GeV))^{1/2} \oplus 3.0\%}$
- Use as veto device
 - reject B_{sig} and B_{reco} candidates with daughters hitting Bwd EMC
 - cut on E_{extra} compute with extra neutrals in the bwd region

-2% reduction in signal selection efficiency
 -15% reduction in background selection efficiency

$B^+ \rightarrow K^+ vv$: SuperB expected sensitivity

- assume SM branching fraction
- 3σ significance @

INFN

SuperB

- BaBar : 8 ab⁻¹
- SuperB-boost : 5 ab⁻¹
- SuperB+boost+ PID +EMC : 4 ab⁻¹
- with ~ 30% precision on \mathcal{B}

• 75 ab⁻¹ SuperB boost + PID + EMC precision : ~ 10%

$B \rightarrow K^* vv$: SuperB expected sensitivity

- assume SM branching fraction
- 3σ significance @

INFN SuperB

- BaBar : 75 ab^{-1}
- SuperB-boost : 50 ab⁻¹
- SuperB+boost+ PID +EMC : 42ab⁻¹

with ~ 30% precision on \mathcal{B}

• 75 ab⁻¹ SuperB boost + PID + EMC precision : ~ 25%

$B \rightarrow K^* vv$: helicity angle measurement

- K* helicity angle distribution sensitive to NP
 - θ = angle between K* direction in B_{sig} rest frame and K direction in K* rest frame
 - F_L = fraction of longitudinally polarized K*

$$rac{d\Gamma}{dcos heta} \propto rac{3}{4}(1-\langle F_L
angle)sin^2 heta+rac{3}{2} \langle F_L
angle cos^2 heta$$

- A proposed analysis strategy : Simultaneous fit to E_{extra} and $\cos\theta$ to measure \mathcal{B} and F_L
- θ determination:

Superi

- HAD recoil: infer Bsig rest frame from Breco kinematics (closed)
- SL recoil: kinematics not closed due to undetected neutrino, θ estimated with poorer resolution wrt HAD analysis

$B \rightarrow K^* vv$: helicity angle resolution

- SL recoil
 - determination of Bsig 4-momentum: from $D^{(*)}l$ vertex and B_{reco} p3, find a cone where B_{reco} 4-momentum should lie, and infer the B_{sig} cone
- AVERAGE METHOD: for each B_{sig} 4-momentum in the cone, compute θ_i . $\theta = \langle \theta_i \rangle$
- **BEAM SPOT METHOD**: for each B_{sig} vector obtain the min distance between the beam-spot and the line through the Dl vertex with the B_{sig} direction. $\theta = \theta$ from B_{sig} with smallest min-dist

$B \rightarrow K^* vv$: helicity angle resolution

SL recoil

Super

- determination of Bsig 4-momentum: from $D^{(*)}l$ vertex and B_{reco} p3, find a cone where B_{reco} 4-momentum should lie, and infer the B_{sig} cone
- AVERAGE METHOD: for each B_{sig} 4-momentum in the cone, compute θ_i . $\theta = \langle \theta_i \rangle$
- **BEAM SPOT METHOD**: for each B_{sig} vector obtain the min distance between the beam-spot and the line through the Dl vertex with the B_{sig} direction. $\theta = \theta$ from B_{sig} with smallest min-dist

$B \rightarrow K^{(*)}vv$: constraints on NP

Toy experiments @ 75 ab⁻¹: 2D fit to E_{extra}/NN_{output} to extract \mathcal{B} and F_L

 F_L from $B^0 \rightarrow K^{0^*} \nu \nu$ only, syst errors not included

• Assume:

SuperB

0

- $\mathcal{B}(B \rightarrow K^* \nu \nu) = (6.8 \pm 1.7) \ge 10^{-6}$
- $\mathcal{B}(B \to K^* v v) = (4.5 \pm 0.5) \times 10^{-6}$
- $F_L(B \to K^* v v) = 0.54 \pm 0.27$

$B \rightarrow \tau v$: SuperB expected sensitivity

Consider BaBar HAD analysis only

- $\mathcal{B}(B^+ \to \tau^+ \nu) = (1.80^{+0.57} 0.54 \pm 0.26) \times 10^{-4}$
- @ 426 fb⁻¹: $\sigma_{stat} / B \sim 32\%$, $\sigma_{syst} / B \sim 15\%$
- systematic uncertainties

Super

dominant: statistical in origin,
 scale with luminosity (~12 % on signal yield)
 not considering analysis improvements,
 treat some syst as irreducible
 (~7% on signal yield)

• 75 ab⁻¹ SuperB boost + PID + EMC precision : ~ 7%

Source of systematics	BF uncertainty $(\%)$
B counting	0.5
Tag B efficiency	5.0
Background PDF	12
Signal PDF	1.7
MC statistics	0.8
Electron identification	2.6
Muon identification	4.7
Kaon identification	0.4
Tracking	1.4
Total	14

Conclusions

- B decays to final states with invisible particle:
 - optimal ground to search for NP
 - search feasible only at Super Flavour Factory with recoil technique
- Benefits from a SuperB factory: high luminosity, but not only
 - improvements due to high detector coverage (+20% reconstruction efficieny, 10% bkg reduction)
 - 2 additional subdetector options under study
 - FWD PID : +2.5-5% signal efficiency
 - **o BWD EMC:** -15% bkg efficiency
- Perspectives for $B \rightarrow K^+ vv$: evidence @ 4 ab⁻¹ with 30% precision on B
- Perspectives for $B \rightarrow K^* vv$: evidence @ 42 ab⁻¹ with 30% precision on \mathcal{B}
- Perspectives for $B \rightarrow \tau v$: conservative estimate of 7% precision @ 75ab⁻¹
- All results are PRELIMINARY: detailed evaluation on benefits from FWD PID and BWD EMC and impact of machine background still under study

Back-up slides