Ricerca di fenomeni supersimmetrici ad LHC con il rivelatore CMS

> Michele Pioppi Imperial College London

> > 28 Aprile 2011 IFAE - Perugia

Sommario: Motivazioni per cercare Susy ad LHC Ricerca di Susy in canali puramente adronici Ricerca di Susy in canali con leptoni nello stato finale Ricerca di Susy in canali con fotoni nello stato finale

Supersimmetria

- Simmetria tra bosoni e fermioni
 - Ad ogni fermione SM corrisponde un partner bosonico supersimmetrico e vice-cersa
- Amata dai teorici perche':
 - Risolve elegantemente il problema delle divergenze della massa dell'Higgs
 - Permette l'unificazione delle costanti di accoppiamento ad alta energia
 - Fornisce un candidato per la materia oscura
- Amata dagli sperimentali perche':
 - Ci sono nuove particelle da scoprire e caratterizzare
- Ampia fenomenologia:
 - Energia mancante + jet +(leptoni)
 - Energia mancante + fotoni
 - 5 higgs (M. Tosi sessione SM ed oltre II)
 - Particelle con vita media lunga (M.Meneghelli sessione dottorandi II)
 - ...

LHC e CMS

Oggetti fisici

Riscoperta dello Standard Model

Strategia di ricerca di Susy

- Ricerca basata su caratteristiche generali:
 - Energia mancante (modelli con R-parità conservata)
 - Alta attività adronica (dal decadimento di gluini e squark)
- Ricerca suddivisa in base alle possibili topologie finali

0-leptoni	1-leptone	OSDL	SSDL	≥3 leptoni	2-fotoni	γ+leptone
Alta sezione	Fondo da	Fondo da	Assenza di	Richiesta di	Stato finale	Richiesta del
d'urto. Fondo	W+jet e tt	Z+jet e tt.	fondo da SM	almeno 3	favorito in	leptone
da QCD		Analisi della		leptoni +MET	modelli	riduce il
		massa(l+l-)			GMSB	fondo QCD

Ricerca di susy in stati finali puramente adronici

3 analisi complementari:

- α_T
 - Primo articolo di LHC su Susy
 - 50 citazioni
 - Utilizza le proprietà cinematiche del fondo da QCD
- Eccesso di MET
 - Alta efficienza di rivelazione
 - Necessita una comprensione dettagliata del rivelatore
- Razor
 - Utilizza le proprietà cinematiche della produzione di due particelle massive

michele.pioppi@cern.ch

α_{T}

Stima inclusiva del fondo

 $R\alpha_T = N(\alpha_T > x)/N(\alpha_T < x)$

II valore di Rα_T è misurato in una regione dove non ci aspettiamo segnale (bassi valori di HT) ed estrapolato nella regione di segnale (HT>350 GeV)

Est. Bkg= 9.4^{+4.8}-4.0(stat.)±1.0(syst.)

Hadronic search with α_T

- I risultati sono stati interpretati in CMSSM favorendo così il confronto con altri esperimenti
- tanβ=3 A₀=0 μ>0
- Rispetto agli esperimenti del Tevatron, la regione esclusa è stata estesa

Ricerca di leptoni con lo stesso segno

- Questo stato finale appare naturalmente in molti modelli susy
- Topologia assente nello Standard
- Ricerca utilizzando tutti i leptoni e 4 regioni di segnale nel piano MET,HT

Fondi principali

ttbar: un l isolato dal W ed uno dal decadimento semileptonico nel jet da b-quark QCD: importante per gli stati finali con decadimenti adronici del τ

Fondo da ttbar

 Tag&Probe con eventi bb(QCD) per misurare l'efficienza di isolamento dei leptoni in jet da bquark

- Distribuzione dei b-jet in bb e in tt e' differente→Efficienza va ripesata
- Efficienza di isolamento per determinare il fondo da ttbar

Fondo da elettroni con il segno della carica sbagliata

Eventi con $Z \rightarrow$ ee dello stesso segno : 5 Eventi con $Z \rightarrow$ ee di segno opposto: 3642

La probabilità di sbagliare il segno della carica è $<\epsilon>=0.5\cdot(5/3642)=0.0007$ e viene applicato al numero di eventi con due leptoni isolati ee/eµ (+HT, +MET)

Ricerca di eventi con leptoni dello stesso segno

Input per teorici

Nell'articolo vengono descritte in dettaglio le acceptanze, le efficienze di ricostruzione dei leptoni, le risoluzioni di HT e MHT

Ogni teorico può testare il proprio modello senza dover passare attraverso la simulazione del rivelatore

Limiti in CMSSM

arxiv:1104.3168

I limiti in CMSSM superano i precedenti risultati ottenuti da Tevatron

I limiti ottenuti con la simulazione di CMS sono in ottimo accordo con quelli ottenuti con il "metodo delle efficienze"

michele.pioppi@cern.ch

Eventi con 2γ+jet+MET

• Selezione

arxiv:1103.0953

- 2 fotoni isolati $P_{T\gamma} > 30 \text{ GeV e } |\eta_{\gamma}| < 1.4$
- Elettroni e fotoni si distinguono per la presenza di una traccia
- 1 jet E_T>30 GeV
- MET> 50 GeV
- Fondo
 - Produzione di fotoni da QCD + MET mismeasurement
 - Misurata nei dati (rinculo in eventi con Z→ee)
 - Elettroni identificati come fotoni (es. W(ev)+jet)
 - La probabilità di identificare un elettrone come un fotone $(f_{e \rightarrow \gamma})$ viene misurata nei dati
 - Numero di eventi con e+ γ +jet+MET viene riscalato per il fattore f_{e $\rightarrow \gamma$}

Fondo da QCD

- Oggetti EM hanno una risoluzione energetica migliore dei getti adronici→la risoluzione dell'energia mancante è dominata dalla risoluzione adronica
- Risoluzione adronica e' misurata in eventi $Z \rightarrow ee$ in funzione di Z_{Pt}
- La risposta adronica viene ripesata secondo lo spettro in E_T del sistema $\gamma\gamma$
- Campione di controllo viene normalizzato a bassi valori di MET (<20 GeV)

Eventi con 2γ+jet+MET

1 evento osservato

Eventi aspettati = 1.2 ± 0.8

- Interpretazioni in GGM
- Br($\chi^0 \rightarrow G\gamma$)=100%
- Limiti superiori tra 0.5 e 1.1 pb

Conclusioni

- 16 documenti pubblici (articoli e PAS) relativi alla ricerca di fenomeni supersimmetrici
- Sfortunamente nessuna di queste ricerche ha osservato segnali di nuova fisica
- Con 35 pb-1 i limiti di TeVatron sono stati superati in molti modelli
- Nel 2011/2012 ci attendiamo molti piu' dati...

michele.pioppi@cern.ch

michele.pioppi@cern.ch

Intervals and Limits for a Physically Bounded μ

- Prototype: measurement x is unbiased Gaussian estimate of μ. (Let (=1.) What is 95% C.L. Upper Limit (UL)?
- 1986: Six methods for UL surveyed by V. Highland (VH) include U.L. = max(0, x + 1.64) and U.L. = max(0,x) + 1.64.
- RPP 1986: Bayesian: uniform prior on the mean μ for μ≥0, prior prob = 0 for (<0. (VH's other five not mentioned.)
- 1994,96: 3 ad-hoc frequentist recipes, one using max(x,0).
- 1998: Feldman & Cousins (FC) "Unified Approach" in (Kendall and Stuart) replaces ad hoc frequentist
- 2002: CL_S from LEP added to Bayesian and FC.
- CMS Statistics Committee recommends using (at least) one of the three (red) methods in 2002-present PDG RPP.
- ATLAS SC method implies U.L. = max(0, x + 1.64) before power constraint (PC), U.L. = max(-1,x) + 1.64 after PC.

Comparison of ATLAS PCL with the three methods in PDG

(Atlas unconstrained U.L. is zero, not null, for x < -1.64)

ATLAS PCL re-opens discussion on use of diagonal line along with ad hoc constraint, out of favor for many years, not recommended by CMS SC.

CMS and ATLAS SC's are reviewing arguments and what has been learned in 25+ years. Academic statisticians have commented as well.

Just tip of iceberg: Poisson example brings in other issues. Nuisance parameters yet more. Choice of test statistic varies.

Atlas

24/44

LHC vs TeVatron

Ratio of parton **Iuminosities at the LHC** and the TeVatron exceeds the inverse ratio of integrated luminosities $(\sim 100 = 5 \text{ fb-1} / 50 \text{ pb-1})$ for mass scale >500-600 GeV (gg, qg)and 1150 GeV (qq)

michele.pioppi@cern.ch

Bauer et al., Phys. Lett. B 690, 280 (2010)

(GeV)

α_T + b-tag

1 evento osservato 0.33^{+0.43}-0.33 (stat) ± 0.13 (syst) eventi di fondo aspettati

- Stesse metodologie dell'analisi α_T
- La richiesta di un jet da b-quark riduce il fondo da QCD e W+jet
- Questa ricerca è sensibile ai modelli con molti b-quark nello stato finale (alto tanβ)

Hadronic search with missing energy

Fondo da Z \rightarrow vv

- $Z \rightarrow vv + jets \rightarrow$ Fondo irriducibile
- $Z \rightarrow vv$ viene rimpiazzato da altri processi

 $Z \rightarrow ll + jets$ Strength: very clean Weakness: low statistics

 $W \rightarrow l\nu + jets$

Strength: larger statistics Weakness: background from SM and SUSY Y

 $\gamma + jets$

Strength: large statistics and clean at high E_T

Weakness: background at low E_T , theoretical errors

Multi-jet QCD background

- Jet energy response from data γ+jets (core) and di-jets (nongaussian tails)
- Jet energy response is applied to a "seed jet sample" to predict the high MHT tails
- Seed jet sample obtained by rebalancing multi-jet sample
- EWK component negligible

bkg estimate=19.0±3.6

Hadronic search with missing energy

Results expressed in terms of 95% C.L. in CMSSM Extends limit from α_T search and Tevatron

Hadronic search with "Razor"

• The "Razor" variables: M_R and R

- Designed to characterise pair-production of heavy particles

Combine all particles into two hemispheres and boost back to rest frame

arXiv:1006.2727

- M_R is a measure of the mass and peaks at the scale of the production

$$M_R = \frac{M_{\tilde{q}}^2 - M_{\chi}^2}{M_{\tilde{q}}}$$

- M_R^T averaged transverse mass with endpoint M_R
- R then the ratio M_R/M_R^T
- For non-signal eventsM_R distribution after R cut shows exponential scaling behaviour

Hadronic search with "Razor"

- N_{jets30}≥2
- R>0.5
- M_R>500 Gev

7 observed events

Similar limits to jets+MHT analysis

Search in single lepton events

CMS-SUS-10-006

- N_{jets20}≥4
- 1 isolated electron or muon pt>20 GeV
- HT>500 GeV
- MET>250 GeV
- 2 observed events in μ+jets+MET
- 0 observed events in e+jets+MET

Main background sources are W+jets and tt events estimated directly from data. Exploit the fact that for W decays the charged lepton and neutrino p_T spectra are on average approximately the same

Results and interpretation

Limit similar to hadronic α_T search in CMSSM

Opposite-sign dilepton search

- Adding a second lepton rejects W+jets leaving mostly top background
- Two isolated leptons (e or μ); one with p_T>20 GeV, other with p_T>10 GeV
- Veto same-flavour pairs in Z mass window and m_{ll}<10 GeV
- N_{jets30}>2
- H_T > 300 GeV
- Y=MET/ √HT > 8.5 √GeV

D signal region, ABC background regions ABCD/matrix method Background in D=A*C/B

Multi-lepton search

- Baseline
 - At least three leptons (e,µ,т) with p⊤ thresholds from 8 GeV
 - Require one non-т lepton (trigger)
- Two final selections
 - MET > 50 GeV
 - H_T > 200 GeV
- Backgrounds:
 - WZ+Jets, ZZ+Jets, ttbar estimated from simulation
 - Z+Jets, WW+Jets, W+Jets, QCD estimated from data

Multi-lepton search

- 55 exclusive channels combined statistically to give final result
- No excess observed
- Set limits in CMSSM for comparison with previous expts.
- Also consider more phenomenological interpretation in GGM model
- Multi-lepton signatures also arise naturally in co-NLSP model with mass degenerate sleptons decaying to leptons and Gravitino

Lepton + photon search

If wino and bino are mass degenerate NLSPs then di-photon signature replaced by lepton+photon signature.

- Isolated photon with p_T>30 GeV
- MET>100 GeV
- Dominant background is Wy
 - Cross section measured by CMS
 [CMS EWK-10-008]
 - Taken from simulation

	Observed	BKG estimate
γ+μ+ΜΕΤ	1	1.7±0.4
γ +e+MET	1	1.6±0.4

