IFAE2011

Incontri di Fisica delle Alte Energie 27-29 Aprile 2011, Perugia

Analog front-end for Monolithic and Hybrid Pixels in a vertical integration CMOS technology for the SuperB LayerO

Alessia Manazza on behalf of the VIPIX collaboration

Università di Pavia Dipartimento di Elettronica I-27100 Pavia, Italy

INFN Sezione di Pavia I-27100 Pavia, Italy

Università di Bergamo Dipartimento di Ingegneria Industriale I-24044 Dalmine (BG), Italy

Outline

- Motivation
- Vertical Integration (3D) Technologies
- DNW MAPS and Hybrid Pixels in 3D Technology
- Analog FE for ApselVI 3D MAPS Chip
- Analog FE for Superpix1 3D Hybrid Chip
- Characterization of SDR1
- Conclusion and Plans for the Future

Motivation

- The SuperB Factory, a high luminosity, e⁺ e⁻ collider intended for heavy flavour physics studies, has been recently funded by the Italian Ministry of Education, University and Research in the framework of the 2011-2013 National Research Plan
- Need for a new Silicon Vertex Tracker (very similar to that of the 5 layer BaBar SVT) supplemented by a new LayerO to measure the first hit as close as possible to the production vertex. Goal is coverage to 300 mrad both forward and backward

A possible site where SuperB experiment will take place: Rome, Italy

- In the R&D activity for the LayerO of SuperB, three different approaches are being pursued
 - Striplets: thin double sided silicon sensors with short strips (mature technology, not so robust against background)
 - Hybrid Pixels: it could become the baseline LayerO option for the TDR in case MAPS are not considered mature enough by that time. The front-end pitch and the total material budget can be reduced to meet LayerO requirements
 - \odot CMOS MAPS: very promising technology, extensive R&D on Deep N-Well devices 50x50 μm^2 with fast readout architecture

Electronic Instrumentation

Università deali Studi di Pavia

Vertical Integration (3D) Technologies

- In wafer level 3D processes, multiple layers of planar devices are stacked and interconnected using inter-layer connections
- 3D processes offers:
 - extra flexibility in system design placement and routing
 - improved packing density
 - reduced parasitics
 - crosstalk immunity
 - \bigcirc reduced power
 - ability to implement added functionality
 - \odot $\,$ fabrication process optimized by tier function $\,$
- The 130 nm CMOS process is provided by Chartered Semiconductor (now part of Globalfoundries). Vertical integration of the wafers is manufactured by Tezzaron Semiconductor
- Tezzaron's 3D solutions:
 - wafer-level stacking
 - \bigcirc via-first approach
 - metal-to-metal thermal bonding with copper

A. Manazza

- Key 3D technologies:
 - bonding between layers
 - \bigcirc wafer thinning
 - Through Silicon Via (TSV)
 - high precision alignment of parts before bonding

DNW MAPS and Hybrid Pixels in 3D Technology

DNW MAPS

- The deep n-well (DNW) acts as collecting element for the charge released in the substrate
- A readout chain is used for Q-V conversion \rightarrow The gain is decoupled from $C_{\rm D}$
- Sensor can cover a large area of the pixel cell
 → PMOS can be included in the design
- The DNW can host NMOS of the analog section
 → The additional area (as compared to standard
 CMOS sensors) allows the designers to implement
 more complex, fast readout circuits, with pixel level
 sparsification and time stamping techniques
- In 2D MAPS pixel electronics and detector share the same area, whereas in a 3D version very close 100% fill factor is achievable
- PMOS competitive n-wells can be placed on a separate layer from the sensor

Hybrid Pixels

- Such devices are back-to-back assembled from two chips, one for the readout electronics and one for the sensor array, by means of bump bonding techniques
- Hybrid pixel detectors usually provide:
 - \bigcirc high signal-to-noise ratio
 - high radiation tolerance
 - 100% fill factor
 - the possibility to implement sophisticated in-pixel electronics without the problem of crosstalk between digital section and sensor
- Relatively large material budget (particle scattering)

 → fine pitch bump bonding methods
 and other, more innovative
 direct bonding techniques
 (Ziptronix or TMicro/ZyCube)
 - In 3D design the use of two layers provides a large amount of functionality in the pixel cell

Università degli Studi di Pavia

Analog Front-end for ApselVI 3D MAPS Chip

- The signal at the shaper output is compared to a chip-wide threshold V_{TH} by means of a discriminator
- The in-pixel logic stores the hit in a flip-flop and takes care of communicating with the peripheral blocks for fast data retrieval
- By using a transconductor, it is possible to set V_{BL} to a given (chip wide) value by means of a voltage reference placed at the periphery of the chip, which is not affected by voltage drop issues

Analog Front-end for ApselVI 3D MAPS Chip

- The final version of the MAPS detector is going to include 128×96 elements
- The pitch of the pixel cell is 50 μ m

Main front-end design features		
Preamplifier Input Device [µm/µm]	32/0.25	
Analog Power Dissipation [µW/pixel]	33	
Peaking Time (Q _{inject} 800 e-) [ns]	320	
Charge sensitivity @C _D = 300 fF [mV/fC]	850	
ENC [e- rms]	34	
Threshold dispersion [e- rms]	103	

Università degli Studi di Pavia

Analog Front-end for Superpix1 3D Hybrid Chip

 C₂ is discharged by a constant current, proportional to the mirror reference current I_F

 \rightarrow The recovery time increases linearly with the signal amplitude

• In order to limit the effects of the threshold dispersion a local fine tuning system is placed between the shaper stage and the discriminator

- The current value of the I_{DAC} source is set by a 4-bit current steering DAC in each channel
- The DAC block contains 15 unity current sources selected through a thermometric code by a decoder

Analog Front-end for Superpix1 3D Hybrid Chip

- The chip to be submitted consists of a 32×128 matrix
- The pitch of the pixel cell is 50 μ m

Main front-end design features		
Preamplifier Input Device [µm/µm]	18/0.25	
Analog Power Dissipation [µW/pixel]	10	
Peaking Time (Q _{inject} =16000 e-) [ns]	260	
Charge sensitivity @C _D = 150 fF [mV/fC]	48	
ENC [e- rms]	130	
Threshold dispersion (before/after correction) [e- rms]	560/65	

Characterization of SDR1

- SDR1 (Sparsified Digital Readout) chip represents the first generation of 3D MAPS with advanced readout architecture for high data rate
- This prototype was especially designed for vertexing applications to the International Linear Collider (ILC) facility
- This is a shaperless version of MAPS front-end with a pixel pitch of 20 μm

Statistical distribution of the PA Baseline

Noise and Gain Result	CHIP 2	CHIP 3
ENC [e-]	76	77
Charge Sensitivity [mV/fC]	560	535

Threshold Scan Result	CHIP 1	CHIP 3
Threshold [mV]	410	409
Threshold Dispersion [e-]	47	58

Conclusions and plans for the future

- Two different analog processors for hybrid pixels (SuperPIX1) and monolithic sensors (ApselVI) have been designed in view of applications to the SVT LayerO of the SuperB Factory
- They will be fabricated in a vertical integration, 130 nm CMOS technology, whose properties have been exploited to increase the functional density of the mixed-signal front-end and to improve the immunity of the analog section (and of the sensor in MAPS devices) from digital signals
- From the standpoint of MAPS design, use of a 3D process may help improve the collection efficiency when a large DNW collecting electrode is adopted
- The results of the SDR1 characterization are only preliminary and we are waiting for the 3D structure
- Characterization of the SDR1 prototypes will require measuring the sensor detection efficiency through tests with infrared laser

