Analysis strategy for the Higgs boson search in the four lepton final state in CMS A. Graziano for the CMS Collaboration

Department of Experimental Physics, University of Torino/INFN, Torino, Italy

The CMS experiment

The CMS experiment at the LHC p-p collider at CERN has been taking highquality data for more than one year nowadays.

Background control: from a control region

- a control region is defined by inverting cuts, so that as few signal events as possible are there
- the background contribution is measured in this region
- the number of background events in the signal region is then evaluated from theory

Background control: normalization of ZZ to single Z

Signal and backgrounds

- \blacktriangleright The considered signal final states are 4 μ , 4e, 2e2 μ
- ► The main backgrounds are ZZ, $t\overline{t}$, $Zb\overline{b}$, $Zc\overline{c}$, W+jets, Z+jets, QCD

Very clean signature:

▶ two pairs of same-flavour, opposite-sign, high- p_T isolated leptons pointing to the same vertex ▶ at least one Z is on-shell → at least one pair of leptons has $m_{inv}(\ell \ell) \simeq m_Z$ ▶ the SM Higgs is a scalar particle → angular correlations among the final-state leptons

$\sigma_{NLO} \cdot BR (\sqrt{s} = 7 \ TeV)$
6.87 fb (NNLO)
10.41 fb (NNLO)
15.93 fb (NNLO)
2.93 pb (NLO)
16.71 pb (NLO)
4.80 pb (NLO)

$$N_{ZZ \to 4\ell} = \frac{\sigma_{pp \to ZZ \to 4\ell}^{NLO}}{\sigma_{pp \to Z \to 2\ell}^{NNLO}} \cdot \frac{\varepsilon_{ZZ \to 4\ell}^{MC}}{\varepsilon_{Z \to 2\ell}^{MC}} \cdot N_{Z \to 2\ell}^{observed}$$

$$\delta N_{ZZ \to 4\ell} = \pm stat. \pm syst. \pm theory$$

most systematic uncertainties cancel out (e.g. those related to luminosity)
 most diagrams are shared by the two processes

The first $H \rightarrow ZZ \rightarrow 4\mu$ candidate

the only event going through the whole selection so far

two pairs of opposite-sign muons originating from a common vertex
p^{µ1}_T = 48.1 GeV, p^{µ2}_T = 43.4 GeV, p^{µ3}_T = 25.9 GeV, p^{µ4}_T = 19.6 GeV
two Z candidates can be reconstructed: m_{Z1} = 92.2 GeV, m_{Z2} = 92.1 GeV
m_{inv}(4µ) = 201.7 GeV

Event selection, part 1: 'Skimming' and 'Preselection'

► Goals:

- discarding the QCD events
- bringing down the rate of W+jets, Z+jets events
- keeping the signal and the most relevant backgrounds (ZZ, Zbb, tt) for bkg control studies

► Cuts:

- \blacktriangleright trigger requirements for e and μ
- $\blacktriangleright p_T$ cuts on leptons
- Ioose isolation requirements on all 4 leptons
- ► 'Best 4ℓ-candidate' choice

Event selection, part 2: 'Selection'

► Goals:

- ▶ rejecting the $Zb\overline{b}$, $t\overline{t}$, $ZZ^{(*)}$ backgrounds
- keeping the highest possible signal efficiency
- ► Cuts:
- more isolation cuts
- ▶ significance of the 3D impact parameter w.r.t. the beamline

Exclusion reach for $\sqrt{s} = 7$ *TeV*, L = 1 *fb*⁻¹

► In the $\sqrt{s} = 7 \ TeV$, $L = 1 \ fb^{-1}$ scenario, the exclusion is not possible in any mass range with the $H \rightarrow ZZ^{(*)} \rightarrow 4\ell$ channel only

- ► However, if a fourth generation of quarks exists, the Higgs boson could be excluded in the region $m_H \lesssim 420 \text{ GeV}$
- Combining the individual subchannels would allow to exclude the mass range $155 < m_H < 450$ GeV with $\sqrt{s} = 7$ TeV,

▶ invariant mass cuts on m_{Z1} , m_{Z2}

References

■ CMS AN 2010/237: S. Baffioni et al., "Search strategy for the Higgs boson in the $ZZ^{(*)}$ decay channel at \sqrt{s} =10 TeV with the CMS experiment"

■ CMS Note 2010/008: The CMS Collaboration, "The CMS physics reach for searches at 7 TeV"

■ CMS AN 2009/020: S. Baffioni et al., "Projected exclusion limits on the SM Higgs boson cross sections obtained by combining the $H \rightarrow WW^{(*)}$ and $ZZ^{(*)}$ decay channels"

CMS PAS 2008/003: The CMS Collaboration, "Search strategy for the Higgs boson in the ZZ^(*) decay channel with the CMS experiment"

IFAE2011, April 27-29, 2011, Perugia (I)

Alberto Graziano (alberto.graziano@cern.ch)