Ricerca di effetti di nuova fisica nel decadimento $B_{s,d} \rightarrow \mu\mu$ a LHCb

Matteo Palutan LNF-INFN (LHCb)

LHCb THCp

IFAE 2011, Perugia, 28 Aprile 2011

Search for the rare decays $B_s^0 \rightarrow \mu^+ \mu^-$ and $B^0 \rightarrow \mu^+ \mu^-$

The LHCb Collaboration¹

Abstract

A search for the decays $B_s^0 \to \mu^+\mu^-$ and $B^0 \to \mu^+\mu^-$ is performed with about 37 pb⁻¹ of pp collisions at $\sqrt{s} = 7$ TeV collected by the LHCb experiment at the Large Hadron Collider at CERN. The observed numbers of events are consistent with the background expectations. The resulting upper limits on the branching ratios are $\mathcal{B}(B_s^0 \to \mu^+\mu^-) < 5.6 \times 10^{-8}$ and $\mathcal{B}(B^0 \to \mu^+\mu^-) < 1.5 \times 10^{-8}$ at 95% confidence level.

arXiv:1103.2465, accettato da Phys. Lett. B

- Motivazioni
- Strategia di analisi
- Risultati

$B_{s,d} \rightarrow \mu^+ \mu^-$: sensibilità alla Nuova Fisica

Il decadimento B_{s,d}→µµ permette di esplorare lo spazio delle fasi del settore Higgs esteso nel MSSM, con un approccio complementare alle ricerche dirette

$$BR(B_{q} \to l^{+}l^{-}) \approx \frac{G_{F}^{2} \alpha^{2} M_{B_{q}}^{3} f_{B_{q}}^{2} \tau_{B_{q}}}{64\pi^{3} \sin^{4} \theta_{W}} |V_{tb} V_{tq}^{*}|^{2} \sqrt{1 - \frac{4m_{l}^{2}}{M_{B_{q}}^{2}}} \\ \left\{ M_{B_{q}}^{2} \left(1 - \frac{4m_{l}^{2}}{M_{B_{q}}^{2}}\right) c_{S}^{2} + \left[M_{B_{q}} c_{P} + \frac{2m_{l}}{M_{B_{q}}} (c_{A} - c_{A}') \right]^{2} \right\}.$$

→ Decadimento doppio soppresso nello Standard Model (FCNC e elicità), predizioni accurate:

 $B_s \rightarrow \mu^+ \mu^- = (3.2 \pm 0.2) \times 10^{-9}$ $B_d \rightarrow \mu^+ \mu^- = (1.0 \pm 0.1) \times 10^{-10}$

A.J.Buras, arXiv:1012.1447, E.Gamiz et al. Phys.Rev.D 80 (2009) 014503

 \rightarrow sensibile a effetti di Nuova Fisica nel settore scalare/pseudo-scalare:

BR(B_{s,d} $\rightarrow \mu^+\mu^-$) $\propto \tan^6\beta/M^4_A$ MSSM, sensibilità a tan β elevati

$B_{s,d} \rightarrow \mu^+ \mu^-$: sensibilità alla Nuova Fisica

Risultati di un fit al modello NUHM1 nel piano tanß vs M_A

O. Buchmuller et al, Eur. Phys. J. C64 (2009)

LHCb calculation using F. Mahmoudi, SuperIso, arXiv: 08083144

Risultati sperimentali dal Tevatron

CDF ha migliorato l'analisi, ed ha un limite aspettato $B_s \rightarrow \mu\mu < 2 \times 10^{-8}$ su 6.9 fb⁻¹ *Kong, Beauty 2011*

risultato di LHCb da 37 pb⁻¹ acquisiti nel 2010

$B_{s,d} \rightarrow \mu^+ \mu^- a \ LHCb$

 □ Sezione d'urto: σ(pp→bbX) @ 7 TeV ~ 300 μb LHCb, PLB 694 (2010)
 □ Accettanza (le coppie bb sono prodotte a piccolo angolo):1.9<η<4.9 → ε(acceptance×reco) per B_{sd}→μμ~ 10% SM: 0.7 eventi B_s→μμ
 □ Boost: distanza di volo dei mesoni B ~ 1 cm

 \rightarrow 12k B+ \rightarrow J/ $\psi(\mu\mu)$ K+ con 0.037 fb⁻¹ CDF ~20k con 3.7 fb⁻¹

$B_{s,d} \rightarrow \mu^+ \mu^- a LHCb$

1) Trigger di muoni

- identificazione degli stati finali muonici con efficienza ~90%

2) Reiezione del fondo

- Ottima risoluzione in massa : dp/p~ 0.35% \rightarrow 0.55% per p=(5-100) GeV/c
- Identificazione di muoni: $\varepsilon(\mu \rightarrow \mu) \sim 98\%$ con $\varepsilon(h \rightarrow \mu) < 1\%$ per p>10 GeV/c
- 3) Risoluzione di vertice & parametro d'impatto

- Separazione del segnale dal fondo prompt : $\sigma(IP) \sim 25~\mu m$ @ $p_T{=}2~GeV/c$

Trigger sui muoni

50% della banda (~1 kHz) dedicata alle linee muoniche
tagli in p_T nelle linee muoniche molto soft → ε(trigger B_{sd}→μμ) ~ 90%
Condizioni di trigger stabili durante l'intera presa dati (incremento di L ~10⁵)_g

Trigger sui muoni

50% della banda (~1 kHz) dedicata alle linee muoniche
tagli in p_T nelle linee muoniche molto soft → ε(trigger B_{sd}→μμ) ~ 90%
Condizioni di trigger stabili durante l'intera presa dati (incremento di L~10⁵)_o

Strategia di analisi

• Preselezione

• Discriminazione segnale/fondo mediante 2 criteri

- Massa invariante della coppia di muoni, $M_{\mu\mu}$

- Likelihood Geometrica, GL, contenente l'informazione topoogica e cinematica dell'evento

• Calibrazione delle likelihoods dai dati

• Normalizzazione

- conversione del numero di eventi osservati in una frazione di decadimento, BR, utilizzando canali di BR noto

• Estrazione del limite

- confronto degli eventi osservati con l'aspettazione per fondo e segnale, in funzione di BR_{sig}; utilizzo del metodo **CLs binnato** per associare un livello di probabilità all'esclusione (osservazione) del valore assunto per BR_{sig}

Preselezione

- Coppie di muoni di carica opposta, accoppiati in un vertice secondario, nell'intervallo di massa invariante [4769-5969] MeV/c²
- Efficienza per il segnale elevata: ~50%
- Reiezione di gran parte del fondo: ~300 eventi nella regione di segnale M(B_{s,d})±60 MeV/c²

 → fondo dominato da eventi bb→µµX (decadimento doppio semi-leptonico o processi in cascata)
 → fondo di picco (B→hh') completamente trascurabile (< 0.1 eventi nella regione di segnale)

• Fondo stimato dalle sidebands

Likelihood Geometrica

Fondo combinatorio dominato da coppie di muoni da b (o c)

 reiezione mediante variabili legate alla topologia e alla cinematica dell'evento
 Le variabili sono decorrelate e combinate in una likelihood, definita piatta per il segnale e piccata a 0 per il fondo

• Per la definizione della likelihood si fa uso esclusivo di campioni MC $B_s \rightarrow \mu\mu$ e bb $\rightarrow \mu\mu X$

variabili di ingresso alla GL, MC

 $B_{d,s} \rightarrow \mu \mu \quad bb \rightarrow \mu \mu X \quad 12$

Likelihood Geometrica

La GL è calibrata dai dati, per evitare di introdurre bias dal MC

Probability ____1 segnale a) per il segnale si usano decadimenti $B_{d,s} \rightarrow h^+ h'^-$ **10⁻²** fondo stessa topologia **10⁻³** b) per il fondo si usano le **LHCb 10**⁻⁴ sidebands di massa fondo di picco trascurabile 0.8 Ω 0.1.2 0.3 0.5 0.6 0.7

analisi effettuata in 4 bins di GL

0.9

GL

Stima del fondo

Il fondo aspettato nelle regioni di segnale è estratto da un fit alle sidebands di massa per ciascuno dei bin in GL

ad alta GL il fondo aspettato è molto basso

Calibrazione della massa invariante B_{d,s}

I valori centrali sono ottenuti da $B_d \rightarrow K^+\pi^-$ and $B_s \rightarrow K^+K^-$ (usando il RICH) La risoluzione di massa è ottenuta dai dati mediante due metodi:

1) Interpolazione dalle risonanze in 2 muoni (J/ψ, ψ(2s), Υ's)

2) Fit al campione inclusivoB→hh' (no RICH)

 $\sigma = 26.7 \pm 0.9_{stat+syst}$ MeV/c²

Normalizzazione

La PDF di segnale (GL e massa invariante) è tradotta in un numero di eventi aspettati normalizzandosi ad un canale noto (BR_{cal}):

$$\mathrm{BR} = \mathrm{BR}_{\mathrm{cal}} \times \frac{\epsilon_{\mathrm{cal}}^{\mathrm{REC}} \epsilon_{\mathrm{cal}}^{\mathrm{SEL}|\mathrm{REC}} \epsilon_{\mathrm{cal}}^{\mathrm{TRIG}|\mathrm{SEL}}}{\epsilon_{\mathrm{sig}}^{\mathrm{REC}} \epsilon_{\mathrm{sig}}^{\mathrm{SEL}|\mathrm{REC}} \epsilon_{\mathrm{sig}}^{\mathrm{TRIG}|\mathrm{SEL}}} \times \frac{f_{\mathrm{cal}}}{f_{B_s^0}} \times \frac{N_{B_s^0 \to \mu^+ \mu^-}}{N_{\mathrm{cal}}} = \alpha \times N_{B_s^0 \to \mu^+ \mu^-}$$

Tre canali indipendenti

1) BR(B⁺ \rightarrow J/ $\psi(\mu^{+}\mu^{-})$ K⁺) = (5.98±0.22) 10⁻⁵ Δ BR = 3.7%

Trigger e PID simili al segnale. Sistematica sul rapporto di efficienze dominata dal tracciamento (+1 traccia); f_d/f_s , noto con un'incertezza del 13%, domina l'errore totale.

2) BR(B_s \rightarrow J/ $\psi(\mu^+\mu^-) \phi(K^+K^-)) = (3.4\pm0.9) 10^{-5} \Delta BR = 26\%$

Trigger e PID simili al segnale. Sistematica sul rapporto di efficienze dominata dal tracciamento (+2 tracce); l'incertezza sul BR dominata l'errore totale.

3) BR(B⁰ \rightarrow K⁺ π ⁻) = (1.94±0.06) 10⁻⁵

Topologia identica al segnale. Contributi all'incertezza totale dall'efficienza del trigger adronico, dal rapporto f_d/f_s e dal conteggio degli eventi.

ABR = 3.1%

f_d/f_s : presente e futuro

Al momento usiamo la media HFAG dei risutati LEP/Tevatron: f_d/f_s=3.71±0.47

http://www.slac.stanford.edu/xorg/hfag/osc/end_2009/#FRAC

Risultati preliminary da LHCb:

Fleischer et al., Phys.Rev.D83,014017(2011) LHCb-CONF-2011-013

2) f_d/f_s dai decadimenti semileptonici, 3 pb⁻¹ : $f_d/f_s=3.84\pm0.34$

Normalizzazione: risultati

$\mathrm{BR} = \underset{\epsilon_{\mathrm{cal}}}{\mathrm{BR}_{\mathrm{cal}}} \times \frac{\epsilon_{\mathrm{cal}}^{\mathrm{REC}} \epsilon_{\mathrm{cal}}^{\mathrm{SEL} \mathrm{REC}} \epsilon_{\mathrm{cal}}^{\mathrm{TRIG} \mathrm{SEL}}}{\epsilon_{\mathrm{sig}}^{\mathrm{REC}} \epsilon_{\mathrm{sig}}^{\mathrm{SEL} \mathrm{REC}} \epsilon_{\mathrm{sig}}^{\mathrm{TRIG} \mathrm{SEL}}} \times \frac{f_{\mathrm{cal}}}{f_{B_s^0}} \times \frac{N_{B_s^0 \to \mu^+ \mu^-}}{N_{\mathrm{cal}}} = \times N_{B_s^0 \to \mu^+ \mu^-}$							
	В	$\frac{\epsilon_{norm}^{REC} \epsilon_{norm}^{SEL REC}}{\epsilon_{sig}^{REC} \epsilon_{sig}^{SEL REC}}$	$\epsilon_{norm}^{TRIG SEL}$ TRIG SEL ϵ_{sig}	$N_{ m norm}$	$\alpha_{B^0_s \to \mu^+ \mu^-}$	$\alpha_{B^0 \to \mu^+ \mu^-}$	
	$(\times 10^{-5})$		_		$(\times 10^{-9})$	$(\times 10^{-9})$	
$B^+ \to J/\psi K^+$	5.98 ± 0.22	0.49 ± 0.02	0.96 ± 0.05	12366 ± 403	8.4 ± 1.3	2.27 ± 0.18	
$B^0_s \to J/\psi \phi$	3.4 ± 0.9	0.25 ± 0.02	0.96 ± 0.05	760 ± 71	10.5 ± 2.9	2.83 ± 0.86	
$B^0 \to K^+ \pi^-$	1.94 ± 0.06	0.82 ± 0.06	0.072 ± 0.010	578 ± 74	7.3 ± 1.8	1.99 ± 0.40	

I tre canali di normalizzazione danno risultati compatibili: → Media pesata tenendo conto delle sistematiche correlate

$$\alpha_{B_s^0 \to \mu^+ \mu^-} = (8.6 \pm 1.1) \times 10^{-9} ,$$

$$\alpha_{B^0 \to \mu^+ \mu^-} = (2.24 \pm 0.16) \times 10^{-9} ,$$

Distribuzione degli eventi osservati

1) Conteggio degli eventi in 4 bins di GL × 6 bins di massa

G

2) Per ciascun bin si calcola il segnale ed il fondo aspettati

3) Si valuta la compatibilità tra osservazione e aspettazione

- in ipotesi S+B [CL_{S+B}]
- in ipotesi B [CL_B]

CL_S= CL_{S+B}/CL_B = compatibilità con l'ipotesi segnale → Usato per calcolare l'esclusione

Limite sul BR($B_s \rightarrow \mu^+ \mu^-$)

BR($B_s \rightarrow \mu \mu$) < 4.3 (5.6)×10⁻⁸ al 90% (95%) CL, con 37 pb⁻¹

limite aspettato < 5.1 (6.5)×10⁻⁸

arXiv:1103.2465, accettato da Phys. Lett. B

CDF $BR(B_s \rightarrow \mu\mu) < 4.3 \times 10^{-8}$ at 95% CL, con 3.7 fb⁻¹ Public note 9892 (2009) D0 $BR(B_s \rightarrow \mu\mu) < 5.1 \times 10^{-8}$ at 95% CL, con 6.1 fb⁻¹ Phys. Lett. B 693 (2010)

Limite sul BR($B_d \rightarrow \mu^+ \mu^-$)

BR($B_d \rightarrow \mu \mu$) < 1.2 (1.5)×10⁻⁸ al 90% (95%) CL, with 37 pb⁻¹

expected limit < 1.4 $(1.8) \times 10^{-8}$

arXiv:1103.2465, accettato da Phys. Lett. B

CDF BR($B_d \rightarrow \mu\mu$)<0.76×10⁻⁸ at 95% CL, with 3.7 fb⁻¹ Public note 9892 (2009)

$B_s \rightarrow \mu^+ \mu^-$: prospettive nel biennio 2011-2012

- ci aspettiamo di integrare ≤ 1 fb⁻¹ nel 2011, e ~2 fb⁻¹ entro il 2012
- i risultati ottenuti suggeriscono ottime prospettive per esplorare nei prossimi due anni lo spazio delle fasi per la ricerca di nuova fisica fino alle previsioni SM!

Prospettive nei decadimenti rari: $B_d \rightarrow K^* \mu^+ \mu^- !!$

L'asimmetria forward-backward nel decadimento $B_d \rightarrow K^*l^+l^-$ è molto sensibile a contributi di nuova fisica

Le misure più recenti sono consistenti tra loro e con lo SM I presenti errori di misura non consentono però di escludere scenari di nuova fisica (flipped-C₇ scenario)

Osservazione del $B_d \rightarrow K^* \mu^+ \mu^- a LHCb$

23±6 eventi osservati su un campione di 36 pb⁻¹ (BR~10⁻⁶), in linea con le previsioni

Con 300 pb⁻¹ si prevede di essere competitivi con le misure esistenti

Sistematica principale: bias introdotto dall'accettanza del rivelatore, dal trigger e dalla selezione:

→ campione di controllo B_d→J/ψ(μμ)K^{*} (stesso stato finale) ottimo accordo tra dati e MC osservato finora

... e osservazione del B⁺ \rightarrow K⁺ $\mu^+\mu^-$

 35 ± 7 eventi in 37 pb⁻¹

È il decadimento più raro del B osservato finora ad LHCb, BR~5×10⁻⁷ !

Motivazione: verificare la predizione SM \Rightarrow BR(B \rightarrow Kee)/BR(Kµµ)~1

Importante: lo SM non prevede asimmetria forward-backward

⇒ complementarità con il K*µµ

Conclusioni

• L'analisi di 37 pb⁻¹ acquisiti nel 2010 a $\sqrt{s} = 7$ TeV ha permesso di porre limiti stringenti sul decadimento $B_{s,d} \rightarrow \mu^+ \mu^-$:

 $BR(B_{s} \rightarrow \mu\mu) < 5.6 \text{ x } 10^{-8} \text{ a } 95\% \text{ CL}$ $BR(B_{d} \rightarrow \mu\mu) < 1.5 \text{ x } 10^{-8} \text{ a } 95\% \text{ CL}$

arXiv:1103.2465, accettato da Phys. Lett. B

• I risultati di LHCb sono competitivi con i limiti osservati al Tevatron, che si basano su una luminosità integrata ~100 volte maggiore

I risultati ottenuti suggeriscono ottime prospettive per esplorare nei prossimi due anni lo spazio delle fasi per la ricerca di nuova fisica fino alle previsioni SM!

Backup

New Physics effects

b

RPV?

NP can contribute to this decay rate (specially SUSY at high tan β (*tan\beta = v_u/v_d*)):

• More than one Higgs \rightarrow contributions to $\mathbb{C}_{S,\mathbb{P}}$

- 2HDM-II : BR proportional to $\tan^4\beta$
- SUSY (MSSM): above + extra $\tan^6\beta$ +...

RPV SUSY: tree level diagrams
Technicolor (TC2), Little Higgs (LHT) ... modify C₁₀.

 $\mathbf{x}^{\mathsf{t}} \mathbf{x}^{\mathsf{t}} \mathbf{y}^{\mathsf{t}} \mathbf{y}$

NP can modify the BR from < SM up to current experimental u.l.

D. Martinez Santos, Moriond EW 2011

New Physics effects

Maximal Enhancements of $S_{\psi\phi}$, $Br(B_s \rightarrow \mu^+ \mu^-)$ and $K^+ \rightarrow \pi^+ \nu \overline{\nu}$

	Upper Bound	Enhancement of	Enhancement of
Model	on (S _{yp})	$\mathbf{Br}(\mathbf{B}_{s} \to \mu^{+}\mu^{-})$	$Br(K^+ \to \pi^+ \nu \overline{\nu})$
CMEV	0.04	200/	200/
	0.04	20%	20%
MFV	0.04	1000%	30%
LHT	0.30	30%	150%
RS	0.75	10%	60%
4G	0.80	400%	300%
AC	0.75	1000%	2%
RVV	0.50	1000%	10%
Large	RS = RS with c	custodial protections	
RH Currents	AC = Agashe,	Carone	U(1) _F
icii currents	RVV = Ross, V	4) $SU(3)_{F}$	

(without taking correlation between them)

98 Amsterdam0411

A.J. Buras, Beauty 2011

New Physics effects

 $B_s \rightarrow \mu^+ \mu^-$ vs. $B_d \rightarrow \mu^+ \mu^-$

4th generation SM [Buras et al. 1002.2126] SUSY flavour models [Altmannshofer et al. 0909.1333]

D. Straub, Beauty 2011 30

MuonID performance & background composition

Performance measured with pure samples of $J/\psi \rightarrow \mu\mu$, $K_s \rightarrow \pi\pi$, $\phi \rightarrow KK$, $\Lambda \rightarrow p\pi$

Ratio of fragmentation fractions

We use $f_d/f_s=3.71\pm0.47$, a recent combinaton of LEP+Tevatron data by HFAG, with 13% uncertainty, dominated by LEP measurements

Quantity	in Z decays	at Tevatron	$\operatorname{combined}$
Mixing probability $\overline{\chi}$	0.1259 ± 0.0042	0.147 ± 0.011	0.1284 ± 0.0069
B^+ or B^0 fraction $f_u = f_d$	0.403 ± 0.009	0.339 ± 0.031	0.404 ± 0.012
B_s^0 fraction f_s	0.103 ± 0.009	0.111 ± 0.014	0.109 ± 0.012
b -baryon fraction f_{baryon}	0.090 ± 0.015	0.211 ± 0.069	0.083 ± 0.020
Correlation between f_s and $f_u = f_d$	-0.523	+0.426	-0.475
Correlation between f_{baryon} and $f_u = f_d$	-0.870	-0.984	-0.854
Correlation between f_{baryon} and f_s	+0.035	-0.582	-0.053

HFAG: http://www.slac.stanford.edu/xorg/hfag/osc/ end_2009/#FRAC

LHCb will measure them with semileptonic decays and hadronic $B_{(s)} \rightarrow$ Dh decays (*Phys.Rev.D83*, 014017 (2011)

Normalization factors: systematic uncertainties

	ε(REC)xε(SEL)	ε(TRIG)	fd/fs	Ν	BR	total
$B^{\pm} \rightarrow J/\psi K^{\pm}$	4%	5%	13%	3%	4%	15%
$B_{S} \rightarrow J/\psi \phi$	8%	5%		9%	26%(*)	28%
$B^0_d \rightarrow K\pi$	7%	14%	13%	13%	3%	23%

(*) from Belle @ Y (5S): arXiv:0905.4345

D. Karlen, Comp. Phys. 12 (1998) 380

Geometrical Likelihood

- How the decorrelation is done:
- 1). Input variables \rightarrow 2) Gaussian variables
 - \rightarrow In this space the correlations are more linear: easier to decorrelate
- 3) Decorrelation is applied and the variables are re-gaussianized

→Tranformation under signal hypothesis: χ^2_S →Transformation under background hypothesis: χ^2_B Discriminating variable: $GL = \chi^2_S - \chi^2_B$ → kept flat for signal

Trigger configurations

Data samples grouped in 5 trigger categories:

- Muon lines stable for 90% of the data set
- Hadron lines: 80% of L taken with L0(h) ET>3.6 and SPD<450 /900
- \rightarrow important for calibration/normalization channels

τo.	TCK category	$L0 - \mu$	$L0-di\mu$	L0-hadron	
LU:		$p_T~({ m GeV}/c)~/~{ m nSPD}$	$p_{T1}~({\rm GeV}/c)$ / $p_{T2}~({\rm GeV}/c)$ / <code>nSPD</code>	$p_T ~({ m GeV}/c) ~/~{ m nSPD}$	integrated luminosity
	1a	1.0/ -	1.0 / 0.4 / -	2.26 / -	$2.2 \mathrm{pb}^{-1}$
	1b	1.0 / 600	1.0 / 0.4 / 600	2.26 / 600	1 pb^{-1}
_	2	1.4 / 900	0.56 / 0.48 / 900	2.6 / 900	$2.3 \mathrm{pb}^{-1}$
	3a	1.4 / 900	0.56 / 0.48 / 900	3.6 / 900	$17.3 \ {\rm pb}^{-1}$
	3b	1.4 / 900	0.56 / 0.48 / 900	3.6 / 450	$11.9 \mathrm{pb}^{-1}$

TCK category Hlt1SingleMuonNoIP		Hlt1TrackMuon	Hlt1TrackAllL0	
	$p_T~({ m GeV}/c)$ / prescale	$p_T/$ IP (mm)/ IPS	$p_T \; ({\rm GeV}/c) \; / \; {\rm IP}/ \; {\rm IPS}$	
1a	1.35 / 1	-	-	
1b	1.35 / 1	-	-	
2	1.8 / 1	800 / 0.11 / 5	1450 / 0.11 / $\sqrt{50}$	
3a	1.8 / 0.2-1	800 / 0.11 / 5	$1850 / 0.11 / \sqrt{50}$	
3b	1.8 / 0.2 - 1	800 / 0.11 / 5	$1850 / 0.11 / \sqrt{50}$	

HLT2:

HIT1:

HLT2UnbiasedB2mumu Line: 2 identified muons with mass>4.7GeV/c

Background composition: peaking background from $B \rightarrow hh'$

The fake rate probability has been convoluted with the p-spectrum of the dominant B→ hh modes. In all cases we expect <0.4 events in ±600 MeV mass range and <0.1 events in the search window.

channel	double misID	double misID,	double misID,
	$\Delta m_{B_s^0} < 600 MeV$	$\Delta m_{B_s^0} < 60 MeV$	$\Delta m_{B^0} < 60 MeV$
$B^0 ightarrow K^+ \pi^-$	0.37 ± 0.09	< 0.02	0.14 ± 0.06
$B^0_s ightarrow K^+ K^-$	0.13 ± 0.06	0.05 ± 0.03	0.03 ± 0.03
$B^0_s ightarrow \pi^+\pi^-$	0.06 ± 0.03	< 0.01	0.06 ± 0.03

 $\frac{\text{The peaking background is fully negligible}}{\text{Our dominant background is combinatorial of } \mu\mu\text{X with } \sim 10\% \text{ contamination}} \\ \text{from } \mu\text{+}\text{fakes [again combinatorial]}.}$

Summary of parameters entering in the limit computation

Signal para	ameters	Background parameters		
Normalizations		Background $\operatorname{GL}_{\mathrm{KS}} p.d.f.$ for h	$B_s^0 \to \mu^+ \mu^-$	
$ \begin{aligned} & f_d / f_s \\ & \alpha_{B^0_s \to \mu^+ \mu^-} \\ & \alpha_{B^0 \to \mu^+ \mu^-} \end{aligned} $	3.71 ± 0.47 $(8.6 \pm 1.1) \times 10^{-8}$ $(2.24 \pm 0.16) \times 10^{-9}$	N^{bkg} , GL_{KS} bin 1 N^{bkg} , GL_{KS} bin 2 N^{bkg} , GL_{KS} bin 3	329.1 ± 6.4 7.4 ± 1.0 1.5 ± 0.4	
Signal GL_{KS} p.d.f.		$N^{\rm bkg}, {\rm GL}_{\rm KS} {\rm bin} 4$	$0.08^{+0.1}_{-0.05}$	
$N_{B_{\circ}}^{TIS} \rightarrow h^+h^- \text{(total)}$	611 ± 76	Background GL_{KS} <i>p.d.f.</i> for <i>l</i>	$B^0 \to \mu^+ \mu^-$	
$N_{B_{(s)}^{0} \to h^{+}h^{-}}^{(s)}$, GL bin 2	228 ± 86	N^{bkg} , GL_{KS} bin 1 N^{bkg} , GL_{KS} bin 2	351.6 ± 6.6 8 3+1 0	
$N_{B_{(s)}^0 \rightarrow h^+ h^-}^{TIS}$, GL bin 3	168 ± 38	$N^{\rm bkg}, {\rm GL}_{\rm KS} {\rm bin} 3$	1.9 ± 0.4	
$N_{B_0}^{TIS} \rightarrow h^+h^-$, GL bin 4	215 ± 23	$N^{\mathbf{bkg}}, \operatorname{GL}_{\mathbf{KS}} \operatorname{bin} 4$	$0.12^{+0.1}_{-0.07}$	
Signal Mass $p.d.f.$		Background Mass $p.d.f.$ for B^0 and B_s^0		
Mean value for B^0	5275.01 ± 0.87 MeV/ c^2	$k, \operatorname{GL}_{\mathrm{KS}}$ bin 1	$-(0.748 \pm 0.051)/\mathrm{GeV}/c^2$	
Mean value for B^0_s	$5363.1 \pm 1.5 \text{ MeV}/c^2$	$k, \operatorname{GL}_{\mathrm{KS}} \operatorname{bin} 2$	$-(1.36 \pm 0.35)/\mathrm{GeV}/c^2$	
Mass resolution	$26.71 \pm 0.95 \mathrm{MeV}/c^2$	$k, \operatorname{GL}_{\mathrm{KS}}$ bin 3	$-(2.29\pm0.28)/{\rm GeV}/c^2$	
Crystal Ball transition point	$\alpha = 2.11 \pm 0.05$	$k, \operatorname{GL}_{\mathrm{KS}}$ bin 4	$-(4.15 \pm 0.91)/\mathrm{GeV}/c^2$	

Geometrical Likelihood Bins

\rightarrow II	≥uu search window						
- μ					GL	bin	
Γ	1			[0, 0.25]	[0.25, 0.5]	[0.5, 0.75]	[0.75, 1]
			Exp. bkg.	$56.9^{+1.1}_{-1.1}$	$1.31\substack{+0.19 \\ -0.17}$	$0.282\substack{+0.076\\-0.065}$	$0.016\substack{+0.021\\-0.010}$
		[-60, -40]	Exp. sig. Observed	$\begin{array}{r} 0.0076\substack{+0.0034\\-0.0030}\\39\end{array}$	${\begin{array}{c} 0.0050\substack{+0.0027\\-0.0020}\\2\end{array}}$	$0.0037^{+0.0015}_{-0.0011}\\1$	$0.0047\substack{+0.0015\\-0.0010}\\0$
			Exp. bkg.	$56.1^{+1.1}_{-1.1}$	$1.28^{+0.18}_{-0.17}$	$0.269\substack{+0.072\\-0.062}$	$0.015\substack{+0.020\\-0.009}$
	$(/c^{2})$	[-40, -20]	Exp. sig. Observed	$\begin{array}{r} 0.0220\substack{+0.0084\\-0.0079}\\55\end{array}$	${\begin{array}{c} 0.0146\substack{+0.0066\\-0.0053}\\2\end{array}}$	$0.0107\substack{+0.0036\\-0.0026}$ 0	$0.0138^{+0.0034}_{-0.0024}\\0$
	s bin (MeV	[-20, 0]	Exp. bkg.	$55.3^{+1.1}_{-1.1}$	$1.24_{-0.16}^{+0.17}$	$0.257\substack{+0.069\\-0.059}$	$0.014\substack{+0.018\\-0.009}$
			Exp. sig. Observed	$0.038\substack{+0.015\\-0.014}\\73$	$0.025\substack{+0.012\\-0.010}\\0$	$0.0183^{+0.0063}_{-0.0047}\\0$	$0.0235^{+0.0059}_{-0.0042}\\0$
	mas		Exp. bkg.	$54.4^{+1.1}_{-1.1}$	$1.21_{-0.16}^{+0.17}$	$0.246^{+0.066}_{-0.057}$	$0.013\substack{+0.017\\-0.008}$
	ariant	[0, 20]	Exp. sig. Observed	$\begin{array}{r} 0.03761\substack{+0.015\\-0.015}\\60\end{array}$	$0.025\substack{+0.012\\-0.010}\\0$	$0.0183^{+0.0063}_{-0.0047}\\0$	$0.0235^{+0.0060}_{-0.0044}\\0$
	In		Exp. bkg.	$53.6^{+1.1}_{-1.0}$	$1.18\substack{+0.17\\-0.15}$	$0.235\substack{+0.063\\-0.054}$	$0.012\substack{+0.015\\-0.007}$
		[20, 40]	Exp. sig. Observed	$\begin{array}{r} 0.0220\substack{+0.0084\\-0.0081}\\53\end{array}$	${\begin{array}{c} 0.0146\substack{+0.0067\\-0.0054}\\2\end{array}}$	$0.0107\substack{+0.0036\\-0.0027}\\0$	$0.0138^{+0.0035}_{-0.0025}\\0$
			Exp. bkg.	$52.8^{+1.0}_{-1.0}$	$1.15\substack{+0.16 \\ -0.15}$	$0.224\substack{+0.060\\-0.052}$	$0.011\substack{+0.014\\-0.007}$
		[40, 60]	Exp. sig. Observed	$\begin{array}{r} 0.0076\substack{+0.0031\\-0.0027}\\55\end{array}$	$0.0050^{+0.0025}_{-0.0019}$ 1	$0.0037^{+0.0013}_{-0.0010}\\0$	$\begin{array}{c} 0.0047\substack{+0.0013\\-0.0010}\\ 0 & 38 \end{array}$

Invariant Mass bins (MeV/c²)

B_s-

R.→	uu search	window	Geo	ometrical	Likelihood	Bins
	aa searen	vv mide vv	[0, 0.25]	[0.25, 0.5]	[0.5, 0.75]	[0.75, 1]
		Exp. bkg.	$60.8^{+1.2}_{-1.1}$	$1.48\substack{+0.19\\-0.18}$	$0.345\substack{+0.084\\-0.073}$	$0.024\substack{+0.027\\-0.014}$
	[-60, -40]	Exp. sig. Observed	$\begin{array}{r} 0.0009\substack{+0.0004\\-0.0003}\\59\end{array}$	$0.0006^{+0.0003}_{-0.0002}$ 2	$0.0004^{+0.0002}_{-0.0001}$ 0	$0.0006^{+0.0002}_{-0.0001}_{0}$
$\left(\begin{array}{c} - \\ - \\ - \end{array} \right)^{-}$		Exp. bkg.	$59.9^{+1.1}_{-1.1}$	$1.44_{-0.17}^{+0.19}$	$0.329\substack{+0.080\\-0.070}$	$0.022\substack{+0.024\\-0.013}$
eV/c	[-40, -20]	Exp. sig. Observed	$\begin{array}{c} 0.0026\substack{+0.009\\-0.009}\\67\end{array}$	$\begin{array}{c} 0.0017\substack{+0.0008\\-0.0006}\\0\end{array}$	$0.0013^{+0.0004}_{-0.0003}$ 0	$0.0016\substack{+0.0004\\-0.0002}\\0$
M	[-20, 0]	Exp. bkg.	$59.0^{+1.1}_{-1.1}$	$1.40^{+0.18}_{-0.17}$	$0.315_{-0.067}^{+0.077}$	$0.020\substack{+0.022\\-0.012}$
ins (Exp. sig. Observed	$\begin{array}{r} 0.0045\substack{+0.0017\\-0.0017}\\56\end{array}$	$\begin{array}{c} 0.0030\substack{+0.0014\\-0.0011}\\2\end{array}$	$0.00219\substack{+0.00067\\-0.00054}$ 0	$0.00280^{+0.00060}_{-0.00045}$ 0
		Exp. bkg.	$58.1^{+1.1}_{-1.1}$	$1.36\substack{+0.18\\-0.16}$	$0.300\substack{+0.073\\-0.064}$	$0.019\substack{+0.021\\-0.011}$
Mass	[0, 20]	Exp. sig. Observed	$\begin{array}{r} 0.0045\substack{+0.0017\\-0.0017}\\60\end{array}$	$0.0030^{+0.0014}_{-0.0011}\\0$	$0.00219\substack{+0.00067\\-0.00054}$ 0	$0.00280^{+0.00060}_{-0.00045}$ 0
nt N	[20, 40]	Exp. bkg.	$57.3^{+1.1}_{-1.1}$	$1.33\substack{+0.17 \\ -0.16}$	$0.287\substack{+0.070\\-0.061}$	$0.017\substack{+0.019\\-0.010}$
arian		Exp. sig. Observed	$\begin{array}{r} 0.0026\substack{+0.0009\\-0.0009}\\42\end{array}$	$0.0017\substack{+0.0008\\-0.0006}$ 2	$0.0013^{+0.0004}_{-0.0003}$ 1	$0.0016\substack{+0.0004\\-0.0002}\\0$
nv:		Exp. bkg.	$56.4^{+1.1}_{-1.1}$	$1.29\substack{+0.17 \\ -0.16}$	$0.274\substack{+0.067\\-0.058}$	$0.016\substack{+0.018\\-0.009}$
	[40, 60]	Exp. sig. Observed	$0.0009^{+0.0003}_{-0.0003}_{-0.0003}_{-0.0003}_{-0.0003}$	$0.0006^{+0.0003}_{-0.0002}$ 2	$0.0004\substack{+0.0001\\-0.0001}\\0$	$0.0006^{+0.0002}_{-0.0001}\\0\\39$

Search for right-handed currents in $b \rightarrow s\gamma$

Main goal, is to measure the photon polarization (mostly left-handed in SM, $A_R/A_L \sim m_s/m_b$) and *CP*-violation parameters *C* and *S* in B_s $\rightarrow \varphi \gamma$

B_s is sensitive to $A^{\Delta} \approx 2A_{\rm R}/A_{\rm L}$

Expect to improve present experimental picture with ~500 pb⁻¹

B_s→ $\phi\gamma$ first observed by Belle, with BR~6×10⁻⁵

Phys. Rev. Lett. 100 121801 (2008)

$B_d \rightarrow K^* \gamma$ observed

Reference point for the measurement of the other radiative decays and as calibration signal (calorimeter energy scale, photon trigger)

Direct *CP* asymmetry: less than 1% in SM, compared to 3% experimental accuracy (PDG08 & HFAG 2008)

Photon polarization: *CP*-violation parameters *C* and *S* from timedependent *CP*-asymmetries (no sensitivity to A^{Δ} for B_d)