Forward-Backward asymmetry measurement in $pp \rightarrow Z/\gamma^* + X \rightarrow \mu^+ \mu^- + X$ events at the ATLAS experiment

G.Cattani – giordano.cattani@cern.ch University of Rome "Tor Vergata" & INFN Roma 2

April 27, 2011 / Page 1 IFAE April 27-29, 2011

$Z \rightarrow \mu \mu$ forward-backward asymmetry

- The presence of both axial and vector coupling of the quarks and leptons to the γ*/Z boson gives rise to an asymmetry in the polar emission of muons.
 - Allow measurement of the weak mixing (Weinberg) angle

$$J^{NC}_{\mu}=J^3_{\mu}-\sin^2\theta_W J^{em}_{\mu}$$

- The F/B asymmetry measurement can be extended to higher invariant masses in Drell-Yan spectrum
 - Possible observation of new physics scenarios: extra dimensions, new gauge bosons, etc.

G.Cattani – giordano.cattani@cern.ch

University of Rome "Tor Vergata" & INFN Roma 2

- Definition of forward-backward asymmetry:
 - A_{FB}= (F-B)/(F+B)
 - F = number of events with $cos(\theta^*)>0$ B = number of events with $cos(\theta^*)<0$
 - θ* defined in Collins-Soper reference frame
- θ dependence of the x-section
 - angle between incoming particle (quark) and outgoing particle (lepton)

$$\frac{1}{\sigma}\frac{d\sigma}{d\cos\theta} = \frac{3}{8}N_c[1 + \frac{4}{3}A_{FB}\cos\theta + \cos^2\theta]$$

The ATLAS experiment

Muon Spectrometer

Pseudorapiity coverage up to $|\eta| < 2.7$

$\sigma/p_{_{T}}$ up to ~10% @ 1 TeV

G.Cattani – giordano.cattani@cern.ch University of Rome "Tor Vergata" & INFN Roma 2

April 27, 2011 / Page 3 IFAE April 27-29, 2011

$Z \rightarrow \mu \mu$ candidate event selection

- Event selection:
 - GRL + bcid
 - Trigger: according to run
 - $N_{VTX} > 1$ and $N_{tracks} >= 3$ and $|Z_{VTX}| < 200$ mm
 - At least 2 combined muons with
 - ◆ p_T > 20 GeV
 - ♦ |η| < 2.4</p>
 - |z₀| < 10 mm for both tracks (wrt to same "good" vertex)
 - Muon quality as Muon Combined Performance Group recommendations
 - Isolation: $\Sigma p_T/p_T < 0.2$ for both muon tracks
 - Charge: $c_1 * c_2 < 0$
 - Mass window: $66 < M_{uu} < 116 \text{ GeV}$

• 2010 data sample (~ 34 pb^{-1})

"Raw" A F/B measurement

- Asymmetry evaluated with counting method:
 - ♦ A_{FB}=(F-B)/(F+B)
 - F = number of events with $cos(\theta^*)>0$
 - B = number of events with $cos(\theta^*) < 0$
- Only statistical error

А _{г/в} (%)		
	All Y _z	Y _z >1
MC	1.3 ± 0.3	4.9 ± 1.3
Data	1.9 ± 0.8	2.2 ± 0.4

A_{FB} vs di-muon invariant mass

- "Raw" distributions should be corrected using MC based response matrices to take into account for:
 - detector resolution and FSR (mass bin migration correction)
 - incorrect quark direction: the direction of the quark and anti-quark is not known in proton-proton experiments and leads to a <u>dilution</u> in the asymmetry

Mass bin migration correction

 10^{3}

- Reconstructed invariant mass is not equal to truth mass
 - Need to correct for invariant mass migration
- Calculate the probability of a reconstructed mass to be a different mass

Mass Migration response matrices

0.9

0.8

0.7

0.6

0.3

0

Mass migration closure test on MC

- Closure test on MC
- Compare:
 - Reco asymmetry vs uncorrected mass
 - Reco asymmetry vs corrected mass
 - Reco asymmetry vs true mass
- Correction brings back the mass distribution to its true value, up to the point that the two curves are indistinguishable

Showing the effect of mass bin correction on $cos(\theta^*)$ distribution

Quark direction: dilution

- At central di-lepton rapidity the probability that the valence quark direction and the di-lepton boost coincide is lower due the smallness of the valence quark distribution
 - This reduces the forward-backward asymmetry: <u>dilution</u>

Less than 60% of events with correct quark direction at |Y| < 1

> G.Cattani – giordano.cattani@cern.ch University of Rome "Tor Vergata" & INFN Ro

Dilution unfolding correction

- Same approach as for mass bin migration correction
 - A response matrix for each true mass bin
 - True vs Reconstructed $cos(\theta^*)$

April 27, 2011 / Page 10 IFAE April 27-29, 2011

Final closure test on MC

Results of the F-B asymmetry with the 2010 data

- MC based corrections applied to 2010 data
 - "Raw" distribution unfolded for incorrect quark direction
- To reduce impact of low statistics
 - No binning in $m_{\mu\mu}$ and $y_{\mu\mu}$

Waiting for 2011 data!

G.Cattani – giordano.cattani@cern.ch University of Rome "Tor Vergata" & INFN Roma 2

Dilution Unfolding

April 27, 2011 / Page 12 IFAE April 27-29, 2011

Summary and outlook

- A first measurement of the forward-backward asymmetry in pp $\rightarrow Z/\gamma^* + X \rightarrow \mu^+\mu^- + X$ with the ATLAS experiment has been performed
 - Preliminary results with an integrated luminosity of ~34pb⁻¹ collected in 2010 have been presented
- MC based corrections for mass migration ad dilution studied
 - Closure test on MC succeded
 - When applied to 2010 data, results are encouraging even on the limited statistics available
 ATLAS Online Luminosity VS = 7 TeV
- Ongoing work with 2011 data
 - Already collected ~150 pb⁻¹ of wich ~120 pb⁻¹ in the last 2 weeks!!

Backup slides

G.Cattani – giordano.cattani@cern.ch University of Rome "Tor Vergata" & INFN Roma 2

Collins-Soper reference frame

- Incoming quark direction not known at LHC
 - usually a valence quark annihilates with a sea anti-quark
 - in average the valence quark has more momentum than sea anti-quark
 - boosted system, quark same direction as Z/γ^*
- Collins-Soper frame reduces uncertainty of transverse momentum of quarks

- Polar axis is defined as the bisector of the two proton beams
- θ^* angle between polar axis and lepton

Stability studies of $Z \rightarrow \mu\mu$ candidates

• Yield per nb⁻¹

Run Number

G.Cattani – giordano.cattani@cern.ch University of Rome "Tor Vergata" & INFN Roma 2

April 27, 2011 / Page 16 IFAE April 27-29, 2011

More on mass correction and dilution

- Study effect of limited MC statistics (~ 2M reconstructed Z $\rightarrow \mu\mu$) on response matrices
- ToyMC:
 - Fluctuate matrix bins within statistical errors
 - For each matrix, calculate corrected mass[cos(θ*)] distributions, calculate asymmetry value
 - Next slide show the distribution of the asymmetry values in the various mass bins
 - Black line is value obtained with "nominal" (=non fluctuated) matrix
 - Dashed blue line: gaussian fit \rightarrow mean and σ
 - As expected, bins where correction is larger have larger dependence on statistical precision of matrix (see also previous slides)

