Transverse Target Moments of SIDIS Vector Meson Production at HERMES

S. Gliske

University of Michigan / HERMES Collaboration
Probing Strangeness in Hard Processes 2010
Laboratori Nazionali di Frascati 19 October 2010

Outline

I. Motivation \& Background

- Access to strange quark distribution and fragmentation functions
- Lund/Artru Model and the Collins Function
II. Previous Results \& Planned Improvements
- HERMES and COMPASS on $H_{1, U T}^{\Varangle s p}$ (collinear access to transversity)
- New Dihadron Program at Hermes
III. Monte Carlo \& Models
- New GMC_Trans Generator
- New Non-Collinear Variant of a Spectator Model
IV. Non-Collinear Cross Section
- Alternate Partial Wave Expansion
- Sub-leading Twist
V. Conclusion \& Outlook

Motivation \& Background

SIDIS Meson Production

- SIDIS cross section can be written $\sigma^{e p \rightarrow e h X}=\sum_{q} D F \otimes \sigma^{e q \rightarrow e q} \otimes F F$
- Access integrals of DFs and FFs through azimuthal asymmetries in $\phi_{h}, \phi_{S}, \phi_{R}$

Distribution Functions (DF)

		quark		
		U	L	T
n	U	$\mathrm{f}_{1} \odot$		h_{1}^{+}(\%)- - ?
c	L		$\mathrm{g}_{1} \odot \rightarrow-$	h_{11}^{1} ¢ $-\cdots \bigcirc$
$\begin{aligned} & \mathrm{e} \\ & \mathbf{o} \\ & \mathrm{n} \end{aligned}$	T	$\mathrm{f}_{1 T}^{\perp} \odot \cdot \odot$	$g_{ \pm \uparrow}^{\perp} \odot-\dagger$	

Fragmentation Functions (FF)

quark		
\mathbf{U}	\mathbf{L}	\mathbf{T}
D_{1}	G_{1}^{\perp}	H_{1}^{\perp}

Why Vector Mesons \& Hadron Pairs?

- Many results (and CLAS12 proposals) on pions and kaons
- Vector mesons access all the same distribution functions with different fragmentation functions
- Dihadrons (vector mesons and hadron pairs) provide complimentary measurements for distribution functions
- Flavor mixing slightly different for pseudo-scalar and vector mesons
- ϕ-meson provides unique access to strange quark distribution functions
- No other final state accesses strange quark distribution functions as cleanly!
- Strange quark Sivers function yields information on gluon orbital angular momentum.
- Also interesting physics in the fragmentation functions.

Lund/Artru String Fragmentation Model

- Consider a gluon flux tube between the struck quark and the remnant.
- Assume the flux tube breaks into a $q \bar{q}$ pair with quantum numbers equal to the vacuum.
- Produced mesons overlapping with $\left|\frac{1}{2}, \frac{1}{2}\right\rangle\left|\frac{1}{2},-\frac{1}{2}\right\rangle$ and $\left|\frac{1}{2}, \frac{1}{2}\right\rangle\left|\frac{1}{2},-\frac{1}{2}\right\rangle$ states prefer "quark left".
- $|0,0\rangle=$ pseudo-scalar mesons.
- $|1,0\rangle=$ longitudinally polarized vector mesons.
- Produced mesons overlapping with $\left|\frac{1}{2}, \frac{1}{2}\right\rangle\left|\frac{1}{2}, \frac{1}{2}\right\rangle$ and $\left|\frac{1}{2},-\frac{1}{2}\right\rangle\left|\frac{1}{2},-\frac{1}{2}\right\rangle$ states prefer "quark right".
- $|1, \pm 1\rangle=$ transversely polarized vector mesons.
- For each charge, "the Collins function" for π and ρ_{L} should have opposite sign to "the Collins function" for the two ρ_{T}.

Previous Results \& Planned Improvements

Dihadron Results

HERMES

Compass

- Measure asymmetry $2\left\langle\sin \left(\phi_{R \perp}+\phi_{S}\right) \sin \theta\right\rangle$ in $\pi^{+} \pi^{-}$pair production
- Collinear access to transversity via IFF $H_{1, U T}^{\Varangle s p}$
- Model based on Hermes results by Bacchetta, et al. (PRD 74:114007, 2006)
- Prediction for Compass results yields too small of an asymmetry (arXiv:0907.0961v1)
- Both experiments indicate non-zero $H_{1, U T}^{\Varangle s p}$ and non-zero transversity function

Possible Sources of Discrepancy

- One possible source of discrepancy could be the Q^{2} dependence of $\phi_{R \perp}$
- More natural cross section variable is ϕ_{R}
- $\left(\phi_{R}-\phi_{R \perp}\right)$ is Q^{2} suppressed
- Effectively reduces resolution, and thus reduces measured moments.
- Another possible source is $\cos \vartheta$ treatment
- Compass integrates over $\cos \vartheta$
- Hermes anti-symmetries in $\cos \vartheta$
- Yet cross section is differential with respect to $\cos \vartheta$
- The moment of interest should vanish in 4π with integration over $\cos \vartheta$.
- Integration over $\cos \vartheta$ introduces machine-dependent bias.
- May be other causes as well, but cannot tell until resolve above items.
- Warning for all experiments
- Momentum acceptance \& cuts significantly affect $\cos \vartheta$ distribution.
- High $|\cos \vartheta|$ implies one high momentum and one low momentum decay particle
- In order to compare results across experiments, need to not integrate over $\cos \vartheta$ but correct for $\cos \vartheta$ acceptance.
- Important in both SIDIS and exclusive vector meson analysis

New SIDIS Dihadron Program at Hermes

- Use $\cos \vartheta$ dependence and ϕ_{R} not $\phi_{R \perp}$.
- Apply acceptance correction.
- Transverse momentum dependent (i.e. non-collinear), sub-leading twist analysis
- Number of unpol. moments: 15 (24 at Tw. 3), compared with pseudo-scalar mesons 2 (3 at Tw. 3).
- Number of transverse target moments: 27 (54 at Tw. 3), compared with pseudo-scalars 3 (6 at Tw. 3).
- Must determine which moments are suitable for release.
- Attempt background subtraction to separate vector mesons from hadron pairs.
- Measure at least 4 vector mesons/hadron pairs (ρ-triplet and ϕ).
- Have data for K^{*} s (less background than ρ)
- Theory regarding mixed mass pairs (πK) not as well developed.
- No model for fragmentation functions.

Mass Distribution: $\boldsymbol{\rho}^{\mathbf{0}}(770)$

- Left panel: comparison with Pythia, highlighting various process decaying into $\pi^{+} \pi^{-}$pair.
- Right panel: Hermes 02-05 data, fit to Breit-Wigner plus linear background.
- High background fraction, but hope only vector mesons in $p p$-wave.
- $\rho^{ \pm}$distributions effectively the same, but slightly lower statistics.

Mass Distribution: $\phi(1020)$

- Lower signal, but much lower background fraction.
- No other mesons decaying into $K^{+} K^{-}$within mass window.
- Clean access to strange quark distribution and fragmentation functions.

Needed Items, Not Previously Available

- Non-collinear SIDIS Monte Carlo generator at sub-leading twist.
- Must simulate azimuthal dependence of cross section for systematic studies.
- Cannot use polynomial fits to the data as was done for pseudo-scalar analysis.
- Generator requires
- Non-collinear cross section at sub-leading twist.
- Non-collinear fragmentation models.
- Would also like to understand "Which term in the cross section includes the 'the Collins function' for ρ_{L}, ρ_{T} ?"
- Use alternate partial wave expansion
- Note: some theorists present could have answered this question without new expansion
- Pursuit of the answer in this manner has led to something not previously computed by any theorist: the sub-leading twist, non-collinear dihadron cross section.

Monte Carlo \& Models

New GMC_Trans Generator

- Method
- Integrates cross section per flavor, yields quark branching ratios
- Throw a flavor type according to branching ratios
- Throw kinematic/angular variables by evaluating cross section
- Can use weights or acceptance rejection
- Full TMD simulation: each event has specific $\left|\boldsymbol{p}_{T}\right|, \phi_{p},\left|\boldsymbol{k}_{T}\right|, \phi_{k}$ values
- Includes both pseudo-scalar and dihadron SIDIS cross sections
- Guiding plans
- Extreme flexibility
- Models for fragmentation and distribution functions
- Various final states: pseudo-scalars, vector mesons, hadron pairs, etc.
- Transverse momentum and flavor dependence
- Output options \& connecting to analysis chains of various experiments
- Minimize dependencies on other libraries
- Full flavor and transverse momentum dependence.
- Should prove a useful tool for both experimentalists and theorists to test models and machine response.

Collinear Spectator Model for Dihadron Fragmentation

- Model developed by A. Bacchetta \& M. Radici, Phys. Rev. D74 (2006)
- The SIDIS X is replaced with a single, on-shell, spin-0 particle of mass $M_{s} \propto M_{h}$.
- Assume one spectator for hadron pairs and vector mesons.
- The leading twist fragmentation correlation matrix can then be computed from the tree level diagram.
- Integration over transverse momenta is performed before extracting fragmentation functions.
- Includes $\pi^{+} \pi^{-}$pairs, ρ^{0}, and ω (both two and three pion decays)
- Unfortunately, the model yields nonzero Collins function for only three partial waves-no $p p$ waves.

TMD Spectator Model for Dihadron Fragmentation

- Use same \boldsymbol{k}_{T} dependent fragmentation correlation matrix as collinear case
- Extract fragmentation function without integrating over \boldsymbol{k}_{T}.
- Requires reworking Dirac matrix algebra
- Generalized to other final states $\pi^{ \pm} \pi^{0}, \rho^{ \pm}$and $K^{+} K^{-}, \phi$
- Slight modifications to p-wave vertex function
- Must also allow several parameter sets, depending on flavor
- Note: only need up to three flavor parameter sets
- $\pi^{+} \pi^{-}: u=-d=-\bar{u}=\bar{d}, s=\bar{s}$
- $\pi^{+} \pi^{0}: u=\bar{d}, d=\bar{u}, s=\bar{s}$
- $K^{+} K^{-}: u=\bar{u}, d=\bar{d}, s=\bar{s}$
- Need to include an extra z dependent $\left|\boldsymbol{k}_{T}\right|$ cutoff.
- Note: mixed mass pairs $\left(\pi K / K^{*}\right)$ require more complicated extensions.

ρ^{0} Kinematic Distributions, p. 1

- Close agreement for x, y, z distributions.
- Main discrepancy in x distribution-most likely do to imbalance in the flavor contributions, or a subtle effects of Q^{2} scaling.

ρ^{0} Kinematic Distributions, p. 2

- Difficultly matching both $P_{h \perp}$ and M_{h} distributions.
- On-shell spectator condition yields

$$
k^{2}=\frac{z}{1-z}\left|\boldsymbol{k}_{T}\right|^{2}+\frac{M_{s}^{2}}{1-z}+\frac{M_{h}^{2}}{z} .
$$

- Exponential cutoff in k^{2} cuts off both M_{h} and $P_{h \perp}$ distributions at high values.
- This motivates the extra $\left|k_{T}\right|^{2}$ cut off.

ϕ Kinematic Distributions: Scaling Variables

- Close agreement for x, y, z distributions.
- Further optimizing flavor balance can improve $x \& y$ distributions.

ϕ Kinematic Distributions, Intrinsic Momentum

Partonic
 Transverse Momentum $\left|\boldsymbol{p}_{T}\right|$

Fragmenting Quark

Transverse Momentum $\left|\boldsymbol{p}_{T}\right|$

- Can plot model predictions for intrinsic momentum
- Unique advantage of this generator.
- Given model requires $p_{T} \approx k_{T}$ in order to get narrow $P_{h \perp}$ peak.
- Also, model does not support any flavor dependence to $k^{2},\left|\boldsymbol{k}_{T}\right|^{2}$ cut offs

ϕ Kinematic Distributions, Mass and $\boldsymbol{P}_{\boldsymbol{h} \perp}$

- Parameters optimized for $M_{h}<1.05$.
- Includes $\left|\boldsymbol{k}_{T}\right|$ cutoff as well (not present in previous ρ^{0} plots).
- z dependence of both k_{T} and k^{2} cutoffs identical
- Agreement is high and can yet be further optimized.
- The "commissioning" of Monte Carlo generator nearing completion.

Non-Collinear Cross Section

Amplitude Level Diagram

- At the amplitude level, we expect the $|l, m\rangle$ of the produced meson to tell us when the Collins signs match or flip.
- But life is more complicated...

Optical Theorem

- Amplitudes of different $\left|l^{\prime}, m^{\prime}\right\rangle$ are summed before amplitude is squared.
- Analog two-dihadron amplitude includes sum the states of both dihadrons.
- Note: cross sections and physical quantities usually prefer direct-sum over direct-product bases.
- E.g., physical meson states are basis elements $|0,0\rangle$ and $|1,0\rangle$, not basis elements $\left|\frac{1}{2}, \frac{1}{2}\right\rangle\left|\frac{1}{2},-\frac{1}{2}\right\rangle,\left|\frac{1}{2},-\frac{1}{2}\right\rangle\left|\frac{1}{2}, \frac{1}{2}\right\rangle$.
- New expansion: in terms of the $|l, m\rangle$ state of the two Dihadron system.

Old Partial Wave Expansion

- Such as in Bacchetta \& Radici, Phys. Rev. D 67(9):094002 (2003)
- Initially expand $\cos \vartheta$ dependence of fragmentation functions in Legendre Polynomials
- Write out cross section
- Write partial wave expansion in $\left|l_{1}, m_{1}\right\rangle\left|l_{2}, m_{2}\right\rangle$ basis via traces of products of 8×8 and 16×16 matrices.

Definitions

- Fragmentation correlation matrix

$$
\Delta^{[\Gamma]}\left(z, M_{h},\left|\boldsymbol{k}_{T}\right|, \cos \vartheta, \phi_{R}-\phi_{k}\right)=\left.4 \pi \frac{z|\boldsymbol{R}|}{16 M_{h}} \int d k^{+} \operatorname{Tr}\left[\Gamma \Delta\left(k, P_{h}, R\right)\right]\right|_{k^{-}=P_{h}^{-} / z} .
$$

- Define fragmentation functions via trace relations

FF	Pseudo-Scalar	Dihadron, other	Dihadron, Gliske
D_{1}	$\Delta^{\left[\gamma^{-}\right]}$	$\Delta^{\left[\gamma^{-}\right]}$	$\Delta^{\left[\gamma^{-}\left(1+i \gamma^{5}\right)\right]}$
G_{1}^{\perp}	--	$\propto \Delta^{\left[\gamma^{-} \gamma^{5}\right]}$	--
H_{1}^{\perp}	$\Delta^{\left[\left(\sigma^{1-}\right) \gamma^{5}\right]}$	$\Delta^{\left[\left(\sigma^{1-}\right) \gamma^{5}\right]}$	$\Delta^{\left[\left(\sigma^{1-}-i \sigma^{2-}\right) \gamma^{5}\right]}$
\bar{H}_{1}^{\Varangle}	--	$\propto \Delta^{\left[\left(\sigma^{2-}\right) \gamma^{5}\right]}$	--

- Real part of fragmentation function similar
- Gliske's definition of $D_{1} \& H_{1}^{\perp}$
- Adds "imaginary" part to $D_{1} \& H_{1}^{\perp}$, instead of introducing new functions.
- Are then complex valued and depends on $Q^{2}, z,\left|k_{T}\right|, M_{h}, \cos \vartheta,\left(\phi_{R}-\phi_{k}\right)$.
- Can be denoted the completely unexpanded, unpolarized and Collins functions.

New Partial Wave Expansion

- Dihadron cross section using completely unexpanded fragmentation functions looks identical to pseudo-scalar meson cross section
- And it should-both are the cross section for producing a single mesonic-system.
- Further structure about the mesonic system is contained in the fragmentation functions.
- Can now expand D_{1}, H_{1}^{\perp} in $|l, m\rangle$ basis of two-dihadron system
- Simple spherical harmonic expansion $Y_{l}^{m}(\cos \vartheta) e^{i m\left(\phi_{R}-\phi_{k}\right)}$.
- After expansion, cross section has identical form to dihadron cross section using previous methods.
- New method uniquely identifies each angular moment with a $|l, m\rangle$ partial wave of the two dihadron system.
- Details in Hermes Internal Note 10-003
- Publicly available via http://hermes.desy.de/.

Unpolarized Cross Section

$$
\begin{aligned}
& \frac{2 \pi x y Q^{2}}{\alpha^{2} M_{h} P_{h \perp}}\left(1+\frac{\gamma^{2}}{2 x}\right)^{-1} d^{9} \sigma_{U U}= \\
& A(x, y)\left[\sum_{l=0}^{2} \sum_{m=0}^{l} P_{l}(\vartheta) \cos \left(m\left(\phi_{h}-\phi_{R}\right)\right) F_{U U, T}^{P_{l}(\vartheta) \cos \left(m\left(\phi_{h}-\phi_{R}\right)\right)}\right] \\
& \quad+B(x, y)\left[\sum_{l=0}^{2} \sum_{m=-l}^{l} P_{l}(\vartheta) \cos \left((2-m) \phi_{h}+m \phi_{R}\right) F_{U U}^{P_{l}(\vartheta) \cos \left((2-m) \phi_{h}+m \phi_{R}\right)}\right. \\
& \quad+C(x, y)\left[\sum_{l=0}^{2} \sum_{m=-l}^{l} P_{l}(\vartheta) \cos \left((1-m) \phi_{h}+m \phi_{R}\right) F_{U U}^{P_{l}(\vartheta) \cos \left((1-m) \phi_{h}+m \phi_{R}\right)}\right.
\end{aligned}
$$

- At leading twist contains same terms as previously found in the literature.
- Setting $m=0$ reduces to the terms in the pseudo-scalar cross section.

$$
d^{6} \sigma_{U U} \propto A(x, y) F_{U U, T}+B(x, y) \cos \phi_{h} F_{U U}^{\cos \phi_{h}}+C(x, y) \cos \phi_{h} F_{U U}^{\cos \phi_{h}} .
$$

Transverse Target Terms of the Cross Section

$$
\left(\frac{1}{S_{T}}\right) \frac{2 \pi x y Q^{2}}{\alpha^{2} M_{h} P_{h \perp}}\left(1+\frac{\gamma^{2}}{2 x}\right)^{-1} d^{9} \sigma_{U T}=\left[\sum_{l=0}^{2} \sum_{m=-l}^{l}\right.
$$

$$
\begin{aligned}
& A(x, y) P_{l}(\cos \vartheta) \sin \left((1-m) \phi_{h}-\phi_{S}+m \phi_{R}\right) F_{U T, T}^{P_{l}(\cos \vartheta) \sin \left((1-m) \phi_{h}-\phi_{S}+m \phi_{R}\right)} \\
& +B(x, y) P_{l}(\cos \vartheta) \sin \left((1-m) \phi_{h}+\phi_{S}+m \phi_{R}\right) F_{U T, T}^{P_{l}(\cos \vartheta) \sin \left((1-m) \phi_{h}+\phi_{S}+m \phi_{R}\right)} \\
& +B(x, y) P_{l}(\cos \vartheta) \sin \left((3+m) \phi_{h}-\phi_{S}+m \phi_{R}\right) F_{U T, T}^{P_{l}(\cos \vartheta) \sin \left((3+m) \phi_{h}-\phi_{S}+m \phi_{R}\right)} \\
& +V(x, y) P_{l}(\cos \vartheta) \sin \left(m \phi_{h}+\phi_{S}+m \phi_{R}\right) F_{U T, T}^{P_{l}(\cos \vartheta) \sin \left(m \phi_{h}+\phi_{S}+m \phi_{R}\right)} \\
& +V(x, y) P_{l}(\cos \vartheta) \sin \left((2+m) \phi_{h}-\phi_{S}+m \phi_{R}\right) F_{U T, T}^{P_{l}(\cos \vartheta) \sin \left((2+m) \phi_{h}-\phi_{S}+m \phi_{R}\right)} .
\end{aligned}
$$

- Again, terms in the cross section agree with published results
- Again, setting $m=0$ reduces to the terms in the pseudo-scalar cross section.
- Note: the terms surviving $P_{h \perp}$ integration depend on the moment and on m.

New Partial Wave Expansion: Summary

- Utilizes similarities between pseudo-scalar \& dihadron cross sections
- Can compute dihadron cross section from pseudo-scalar cross section, at any twist
- One symbol for each experimentally accessible fragmentation function.
- No clean access to "The Collins function" for long. vector mesons
- Is included in $H_{1}^{|2,0\rangle}$, but mixed with $T T$ interference. - $|2,0\rangle \in \operatorname{Span}\{|1,0\rangle|1,0\rangle,|1,1\rangle|1,-1\rangle\}+$ h.c.
- There does exist "the Collins function" for trans. vector mesons: $H_{1}^{|2, \pm 2\rangle}$.
- $|2, \pm 2\rangle=|1, \pm 1\rangle$
- Requires assuming no tensor mesons
- Could have $d s$ interference also mixed in.
- The previously analyzed $H_{1 U T}^{\Varangle s p}=H_{1}^{|1,1\rangle}$ is not pure $s p$ interference
- $|1,1\rangle \in \operatorname{Span}\{|1,1\rangle|0,0\rangle,|1,1\rangle|1,0\rangle\}+$ h.c.
- Includes also $L T$ pp interference.
- Process leading to H_{1}^{\Varangle} is understood.
- Collins fragmentation function takes trans. polarized quark and produces any polarized final state.

Conclusion \& Outlook

Conclusion \& Outlook

- Non-collinear SIDIS Dihadron production provides unique access to
- Strange quark distribution and fragmentation
- Testing the Lund/Artru model
- Future analysis need to use ϕ_{R} rather than $\phi_{R \perp}$ and include $\cos \vartheta$ dependence.
- New partial wave expansion
- Alternate view greatly simplifies complexity
- Easier to find "the Collins function" for vector mesons.
- But is also powerful computational tool.
- All 18 TMD dihadron fragmentation functions are important
- Hope $e^{+} e^{-}$machines extract all 18 , not just 2 of the 5 collinear.
- Cross section for dihadrons can be directly computed from pseudo-scalar cross section, at any twist
- New Monte Carlo Generator is excellent testing ground for flavor and transverse momentum dependent distribution and fragmentation functions.

Backup Slides

Relation with Previous Notation

- Comparing with similar trace definitions, e.g. PRD 67:094002 yields the relations

$$
\begin{align*}
\left.D_{1}\right|_{\text {Gliske }} & =\left[D_{1}+i \frac{|\boldsymbol{R}|\left|\boldsymbol{k}_{T}\right|}{M_{h}^{2}} \sin \vartheta \sin \left(\phi_{R}-\phi_{k}\right) G_{1}^{\perp}\right]_{\text {other }}, \tag{1}\\
\left.H_{1}^{\perp}\right|_{\text {Gliske }} & =\left[H_{1}^{\perp}+\frac{|\boldsymbol{R}|}{\left|\boldsymbol{k}_{T}\right|} \sin \vartheta e^{i\left(\phi_{R}-\phi_{k}\right)} \bar{H}_{1}^{\Varangle}\right]_{\text {other }}=\left.\frac{|\boldsymbol{R}|^{2}}{\left|\boldsymbol{k}_{T}\right|^{2}} H_{1}^{\Varangle}\right|_{\text {other }} . \tag{2}
\end{align*}
$$

- Inconsistencies in the literature between definitions of $H_{1}^{\Varangle}, \bar{H}_{1}^{\Varangle}, H_{1}^{\prime \Varangle}$.

Extraction Method \& Systematics

- Use maximum likelihood estimation to preform fit within each kinematic bin.
- Exact number of unpolarized and polarized terms to be included is not yet determined.
- Acceptance correction:
- Use GMC_Trans to generate kinematic distribution, but flat in angles
- Run GMC_Trans "no angular dependence" data through acceptance
- Make Kernel Density Estimation (KDE) over angles within each kinematic bin
- This is now an estimate of the effective acceptance function integrated over the bin.
- Weight each data point by $1 / K D E$.
- Smearing effects and effectiveness of acceptance correction to be tested via "PEPSI Challenge"
- Generate data using Pythia with RadGen \& place through acceptance
- Weight using angular portion of cross section via GMC_Trans or KDE of data.
- Compare weighting 4π vs. acceptance + smearing.
- Linear extrapolate moments in mass sidebands to estimate background under VM peak, then perform background subtraction.

