Transverse Target Moments of SIDIS Vector Meson Production at HERMES

S. Gliske

University of Michigan / HERMES Collaboration

Probing Strangeness in Hard Processes 2010 Laboratori Nazionali di Frascati ______19 October 2010

Outline

I. Motivation & Background

- Access to strange quark distribution and fragmentation functions
- Lund/Artru Model and the Collins Function

II. Previous Results & Planned Improvements

- HERMES and COMPASS on $H_{1,UT}^{\swarrow sp}$ (collinear access to transversity)
- New Dihadron Program at HERMES

III. Monte Carlo & Models

- ▶ New GMC_Trans Generator
- New Non-Collinear Variant of a Spectator Model
- IV. Non-Collinear Cross Section
 - Alternate Partial Wave Expansion
 - Sub-leading Twist

V. Conclusion & Outlook

Motivation & Background

SIDIS Meson Production

- ► SIDIS cross section can be written $\sigma^{ep \to ehX} = \sum_{q} DF \otimes \sigma^{eq \to eq} \otimes FF$
- Access integrals of DFs and FFs through azimuthal asymmetries in φ_h, φ_S, φ_R

Distribution Functions (DF)

Fragmentation Functions (FF)

quark			
U	L	Т	
D_1	G_1^\perp	H_1^{\perp}	

Why Vector Mesons & Hadron Pairs?

- ► Many results (and CLAS12 proposals) on pions and kaons
- Vector mesons access all the same distribution functions with different fragmentation functions
- Dihadrons (vector mesons and hadron pairs) provide complimentary measurements for distribution functions
- ► Flavor mixing slightly different for pseudo-scalar and vector mesons
- \blacktriangleright ϕ -meson provides unique access to strange quark distribution functions
 - ► No other final state accesses strange quark distribution functions as cleanly!
 - Strange quark Sivers function yields information on gluon orbital angular momentum.
- ► Also interesting physics in the fragmentation functions.

Motivation & Background

Lund/Artru String Fragmentation Model

- Consider a gluon flux tube between the struck quark and the remnant.
- Assume the flux tube breaks into a $q\bar{q}$ pair with quantum numbers equal to the vacuum.
- Produced mesons overlapping with $|\frac{1}{2}, \frac{1}{2}\rangle |\frac{1}{2}, -\frac{1}{2}\rangle$ and $|\frac{1}{2}, \frac{1}{2}\rangle |\frac{1}{2}, -\frac{1}{2}\rangle$ states prefer "quark left".
 - $|0,0\rangle =$ pseudo-scalar mesons.
 - $|1,0\rangle =$ longitudinally polarized vector mesons.
- Produced mesons overlapping with $|\frac{1}{2}, \frac{1}{2}\rangle |\frac{1}{2}, \frac{1}{2}\rangle$ and $|\frac{1}{2}, -\frac{1}{2}\rangle |\frac{1}{2}, -\frac{1}{2}\rangle$ states prefer "quark right".
 - $|1,\pm 1\rangle$ = transversely polarized vector mesons.
- For each charge, "the Collins function" for π and ρ_L should have opposite sign to "the Collins function" for the two ρ_T .

Previous Results & Planned Improvements

Dihadron Results

HERMES

COMPASS

- Measure asymmetry $2 \langle \sin(\phi_{R\perp} + \phi_S) \sin \theta \rangle$ in $\pi^+\pi^-$ pair production
- ► Collinear access to transversity via IFF H^{₹sp}_{1,UT}
- Model based on HERMES results by Bacchetta, *et al.* (PRD 74:114007, 2006)
- Prediction for COMPASS results yields too small of an asymmetry (arXiv:0907.0961v1)
- ► Both experiments indicate non-zero H^{ζsp}_{1,UT} and non-zero transversity function

Possible Sources of Discrepancy

- One possible source of discrepancy could be the Q^2 dependence of $\phi_{R\perp}$
 - More natural cross section variable is ϕ_R
 - $(\phi_R \phi_{R\perp})$ is Q^2 suppressed
 - Effectively reduces resolution, and thus reduces measured moments.
- Another possible source is $\cos \vartheta$ treatment
 - Compass integrates over $\cos \vartheta$
 - Hermes anti-symmetries in $\cos \vartheta$
 - Yet cross section is differential with respect to $\cos \vartheta$
 - The moment of interest should vanish in 4π with integration over $\cos \vartheta$.
 - Integration over $\cos \vartheta$ introduces machine-dependent bias.
- May be other causes as well, but cannot tell until resolve above items.
- Warning for all experiments
 - Momentum acceptance & cuts significantly affect $\cos \vartheta$ distribution.
 - High $|\cos \vartheta|$ implies one high momentum and one low momentum decay particle
 - ► In order to compare results across experiments, need to not integrate over cos ϑ but correct for cos ϑ acceptance.
 - Important in both SIDIS and exclusive vector meson analysis

New SIDIS Dihadron Program at HERMES

- Use $\cos \vartheta$ dependence and ϕ_R not $\phi_{R\perp}$.
- Apply acceptance correction.
- Transverse momentum dependent (i.e. non-collinear), sub-leading twist analysis
 - ▶ Number of unpol. moments: 15 (24 at Tw. 3), compared with pseudo-scalar mesons 2 (3 at Tw. 3).
 - ▶ Number of transverse target moments: 27 (54 at Tw. 3), compared with pseudo-scalars 3 (6 at Tw. 3).
 - Must determine which moments are suitable for release.
- ► Attempt background subtraction to separate vector mesons from hadron pairs.
- Measure at least 4 vector mesons/hadron pairs (ρ -triplet and ϕ).
 - Have data for K^* s (less background than ρ)
 - Theory regarding mixed mass pairs (πK) not as well developed.
 - ► No model for fragmentation functions.

Previous Results & Planned Improvements

Mass Distribution: $\rho^0(770)$

- Left panel: comparison with Pythia, highlighting various process decaying into $\pi^+\pi^-$ pair.
- ▶ Right panel: Hermes 02-05 data, fit to Breit-Wigner plus linear background.
- ► High background fraction, but hope only vector mesons in *pp*-wave.
- ρ^{\pm} distributions effectively the same, but slightly lower statistics.

Previous Results & Planned Improvements

Mass Distribution: $\phi(1020)$

- ► Lower signal, but much lower background fraction.
- ▶ No other mesons decaying into K^+K^- within mass window.
- Clean access to strange quark distribution and fragmentation functions.

Needed Items, Not Previously Available

- ► Non-collinear SIDIS Monte Carlo generator at sub-leading twist.
 - Must simulate azimuthal dependence of cross section for systematic studies.
 - Cannot use polynomial fits to the data as was done for pseudo-scalar analysis.
- Generator requires
 - ► Non-collinear cross section at sub-leading twist.
 - Non-collinear fragmentation models.
- Would also like to understand "Which term in the cross section includes the 'the Collins function' for ρ_L , ρ_T ?"
 - Use alternate partial wave expansion
 - Note: some theorists present could have answered this question without new expansion
 - Pursuit of the answer in this manner has led to something not previously computed by any theorist: the sub-leading twist, non-collinear dihadron cross section.

New GMC_Trans Generator

Method

- ► Integrates cross section per flavor, yields quark branching ratios
- Throw a flavor type according to branching ratios
- Throw kinematic/angular variables by evaluating cross section
 - Can use weights or acceptance rejection
- Full TMD simulation: each event has specific $|\mathbf{p}_T|$, ϕ_p , $|\mathbf{k}_T|$, ϕ_k values
- Includes both pseudo-scalar and dihadron SIDIS cross sections
- Guiding plans
 - Extreme flexibility
 - Models for fragmentation and distribution functions
 - ► Various final states: pseudo-scalars, vector mesons, hadron pairs, etc.
 - Transverse momentum and flavor dependence
 - Output options & connecting to analysis chains of various experiments
 - Minimize dependencies on other libraries
 - ► Full flavor and transverse momentum dependence.
- Should prove a useful tool for both experimentalists and theorists to test models and machine response.

Collinear Spectator Model for Dihadron Fragmentation

- ▶ Model developed by A. Bacchetta & M. Radici, Phys. Rev. D74 (2006)
- ► The SIDIS X is replaced with a single, on-shell, spin-0 particle of mass $M_s \propto M_h$.
- Assume one spectator for hadron pairs and vector mesons.
- The leading twist fragmentation correlation matrix can then be computed from the tree level diagram.
- Integration over transverse momenta is performed before extracting fragmentation functions.
- Includes $\pi^+\pi^-$ pairs, ρ^0 , and ω (both two and three pion decays)
- Unfortunately, the model yields nonzero Collins function for only three partial waves—no pp waves.

TMD Spectator Model for Dihadron Fragmentation

- Use same k_T dependent fragmentation correlation matrix as collinear case
- Extract fragmentation function without integrating over k_T .
 - Requires reworking Dirac matrix algebra
- Generalized to other final states $\pi^{\pm}\pi^{0}$, ρ^{\pm} and $K^{+}K^{-}$, ϕ
 - Slight modifications to *p*-wave vertex function
 - Must also allow several parameter sets, depending on flavor
- ► Note: only need up to three flavor parameter sets

•
$$\pi^+\pi^-: u = -d = -\bar{u} = \bar{d}, s = \bar{s}$$

•
$$\pi^+\pi^0$$
: $u = \bar{d}, d = \bar{u}, s = \bar{s}$

•
$$K^+K^-$$
: $u = \overline{u}, d = \overline{d}, s = \overline{s}$

- Need to include an extra z dependent $|\mathbf{k}_T|$ cutoff.
- ► Note: mixed mass pairs $(\pi K/K^*)$ require more complicated extensions.

ho^0 Kinematic Distributions, p.1

- Close agreement for x, y, z distributions.
- Main discrepancy in x distribution—most likely do to imbalance in the flavor contributions, or a subtle effects of Q² scaling.

ho^0 Kinematic Distributions, p.2

- Difficultly matching both $P_{h\perp}$ and M_h distributions.
- On-shell spectator condition yields

$$k^{2} = \frac{z}{1-z}|\boldsymbol{k}_{T}|^{2} + \frac{M_{s}^{2}}{1-z} + \frac{M_{h}^{2}}{z}$$

Exponential cutoff in k² cuts off both M_h and P_{h⊥} distributions at high values.
 This motivates the extra |k_T|² cut off.

ϕ Kinematic Distributions: Scaling Variables

- Close agreement for x, y, z distributions.
- Further optimizing flavor balance can improve x & y distributions.

ϕ Kinematic Distributions, Intrinsic Momentum

- Can plot model predictions for intrinsic momentum
 - Unique advantage of this generator.
- Given model requires $p_T \approx k_T$ in order to get narrow $P_{h\perp}$ peak.
- Also, model does not support any flavor dependence to k^2 , $|k_T|^2$ cut offs

ϕ Kinematic Distributions, Mass and $P_{h\perp}$

- Parameters optimized for $M_h < 1.05$.
- Includes $|\mathbf{k}_T|$ cutoff as well (not present in previous ρ^0 plots).
 - *z* dependence of both k_T and k^2 cutoffs identical
- Agreement is high and can yet be further optimized.
- ► The "commissioning" of Monte Carlo generator nearing completion.

Non-Collinear Cross Section

Non-Collinear Cross Section

Amplitude Level Diagram

- ► At the amplitude level, we expect the |l, m⟩ of the produced meson to tell us when the Collins signs match or flip.
- But life is more complicated...

Optical Theorem

- Amplitudes of different $|l', m'\rangle$ are summed before amplitude is squared.
- Analog two-dihadron amplitude includes sum the states of both dihadrons.
- Note: cross sections and physical quantities usually prefer direct-sum over direct-product bases.
 - ► E.g., physical meson states are basis elements |0,0⟩ and |1,0⟩, not basis elements |¹/₂, ¹/₂⟩|¹/₂, -¹/₂⟩, |¹/₂, -¹/₂⟩|¹/₂, ¹/₂⟩.
 - New expansion: in terms of the $|\tilde{l}, \tilde{m}\rangle$ state of the two Dihadron system.

Old Partial Wave Expansion

- ► Such as in Bacchetta & Radici, *Phys. Rev.* **D** 67(9):094002 (2003)
- ► Initially expand cos ϑ dependence of fragmentation functions in Legendre Polynomials
- Write out cross section
- ► Write partial wave expansion in |l₁, m₁⟩|l₂, m₂⟩ basis via traces of products of 8 × 8 and 16 × 16 matrices.

Definitions

Ĺ

Fragmentation correlation matrix

$$\Delta^{[\Gamma]}(z, M_h, |\mathbf{k}_T|, \cos \vartheta, \phi_R - \phi_k) = 4\pi \frac{z|\mathbf{R}|}{16M_h} \int dk^+ \operatorname{Tr}\left[\Gamma \Delta(k, P_h, R)\right] \Big|_{k^- = P_h^-/z}$$

Define fragmentation functions via trace relations

FF	Pseudo-Scalar	Dihadron, other	Dihadron, Gliske
D_1	$\Delta^{[\gamma^-]}$	$\Delta^{[\gamma^-]}$	$\Delta^{[\gamma^-(1+i\gamma^5)]}$
G_1^\perp		$\propto \Delta^{[\gamma^-\gamma^5]}$	
H_1^\perp	$\Delta^{[(\sigma^{1-})\gamma^5]}$	$\Delta^{[(\sigma^{1-})\gamma^5]}$	$\Delta^{[(\sigma^{1-}-i\sigma^{2-})\gamma^5]}$
\bar{H}_1^{\swarrow}		$\propto \Delta^{[(\sigma^{2-})\gamma^5]}$	

- Real part of fragmentation function similar
- Gliske's definition of $D_1 \& H_1^{\perp}$
 - Adds "imaginary" part to $D_1 \& H_1^{\perp}$, instead of introducing new functions.
 - Are then complex valued and depends on Q^2 , z, $|k_T|$, M_h , $\cos \vartheta$, $(\phi_R \phi_k)$.
 - Can be denoted the completely unexpanded, unpolarized and Collins functions.

New Partial Wave Expansion

- Dihadron cross section using completely unexpanded fragmentation functions looks identical to pseudo-scalar meson cross section
 - And it should—both are the cross section for producing a single mesonic-system.
 - Further structure about the mesonic system is contained in the fragmentation functions.
- ► Can now expand D_1 , H_1^{\perp} in $|l, m\rangle$ basis of two-dihadron system
 - Simple spherical harmonic expansion $Y_l^m(\cos \vartheta)e^{im(\phi_R-\phi_k)}$.
- After expansion, cross section has identical form to dihadron cross section using previous methods.
- ► New method uniquely identifies each angular moment with a |l, m⟩ partial wave of the two dihadron system.
- Details in HERMES Internal Note 10-003
 - Publicly available via http://hermes.desy.de/.

Unpolarized Cross Section

$$\frac{2\pi xyQ^2}{\alpha^2 M_h P_{h\perp}} \left(1 + \frac{\gamma^2}{2x}\right)^{-1} d^9 \sigma_{UU} =$$

$$A(x, y) \left[\sum_{l=0}^2 \sum_{m=0}^l P_l(\vartheta) \cos(m(\phi_h - \phi_R)) F_{UU,T}^{P_l(\vartheta)} \cos(m(\phi_h - \phi_R))\right]$$

$$+ B(x, y) \left[\sum_{l=0}^2 \sum_{m=-l}^l P_l(\vartheta) \cos((2 - m)\phi_h + m\phi_R) F_{UU}^{P_l(\vartheta)} \cos((2 - m)\phi_h + m\phi_R)\right]$$

$$+ C(x, y) \left[\sum_{l=0}^2 \sum_{m=-l}^l P_l(\vartheta) \cos((1 - m)\phi_h + m\phi_R) F_{UU}^{P_l(\vartheta)} \cos((1 - m)\phi_h + m\phi_R)\right]$$

At leading twist contains same terms as previously found in the literature.
 Setting m = 0 reduces to the terms in the pseudo-scalar cross section.

$$d^{6}\sigma_{UU} \propto A(x,y)F_{UU,T} + B(x,y)\cos\phi_{h}F_{UU}^{\cos\phi_{h}} + C(x,y)\cos\phi_{h}F_{UU}^{\cos\phi_{h}}.$$

Transverse Target Terms of the Cross Section

$$\begin{pmatrix} \frac{1}{S_T} \end{pmatrix} \frac{2\pi x y Q^2}{\alpha^2 M_h P_{h\perp}} \left(1 + \frac{\gamma^2}{2x} \right)^{-1} d^9 \sigma_{UT} = \left[\sum_{l=0}^2 \sum_{m=-l}^l A(x, y) P_l(\cos \vartheta) \sin((1-m)\phi_h - \phi_S + m\phi_R) F_{UT,T}^{P_l(\cos \vartheta)} \sin((1-m)\phi_h - \phi_S + m\phi_R) + B(x, y) P_l(\cos \vartheta) \sin((1-m)\phi_h + \phi_S + m\phi_R) F_{UT,T}^{P_l(\cos \vartheta)} \sin((1-m)\phi_h + \phi_S + m\phi_R) F_{UT,T}^{P_l(\cos \vartheta)} \sin((3+m)\phi_h - \phi_S + m\phi_R) F_{UT,T}^{P_l(\cos \vartheta)} \sin((3+m)\phi_h - \phi_S + m\phi_R) F_{UT,T}^{P_l(\cos \vartheta)} \sin((3+m)\phi_h - \phi_S + m\phi_R) F_{UT,T}^{P_l(\cos \vartheta)} \sin((2+m)\phi_h - \phi_S + m\phi_R) F_{UT,T}^{P_l(\cos \vartheta)} \sin(m\phi_h + \phi_S + m\phi_R) F_{UT,T}^{P_l(\cos \vartheta)} \sin(m\phi_h + \phi_S + m\phi_R) F_{UT,T}^{P_l(\cos \vartheta)} \sin(m\phi_h + \phi_S + m\phi_R) F_{UT,T}^{P_l(\cos \vartheta)} \sin((2+m)\phi_h - \phi_S + m\phi_R) F_{UT,T}^{P_l(\cos \vartheta)} \sin((2+m)\phi_R) F_{UT,T}^{P_l(\cos \vartheta)} \sin((2+m)\phi_R)$$

- ► Again, terms in the cross section agree with published results
- Again, setting m = 0 reduces to the terms in the pseudo-scalar cross section.
- ▶ Note: the terms surviving $P_{h\perp}$ integration depend on the moment and on *m*.

Gliske (HERMES / Michigan)

New Partial Wave Expansion: Summary

- ► Utilizes similarities between pseudo-scalar & dihadron cross sections
 - Can compute dihadron cross section from pseudo-scalar cross section, at any twist
- One symbol for each experimentally accessible fragmentation function.
- ► No clean access to "The Collins function" for long. vector mesons
 - Is included in $H_1^{|2,0\rangle}$, but mixed with *TT* interference.
 - $\blacktriangleright \hspace{0.1 in} |2,0\rangle \in \text{Span}\{|1,0\rangle|1,0\rangle, \hspace{0.1 in} |1,1\rangle|1,-1\rangle\} + \hspace{0.1 in} \text{h.c.}$
- There does exist "the Collins function" for trans. vector mesons: $H_1^{[2,\pm 2)}$.
 - $\bullet |2,\pm 2\rangle = |1,\pm 1\rangle$
 - Requires assuming no tensor mesons
 - Could have *ds* interference also mixed in.
- The previously analyzed $H_{1UT}^{\triangleleft sp} = H_1^{|1,1\rangle}$ is not pure *sp* interference
 - ► $|1,1\rangle \in \text{Span}\{|1,1\rangle|0,0\rangle$, $|1,1\rangle|1,0\rangle\} + \text{h.c.}$
 - ► Includes also *LT pp* interference.
- Process leading to H_1^{\triangleleft} is understood.
- Collins fragmentation function takes trans. polarized quark and produces any polarized final state.

Conclusion & Outlook

Conclusion & Outlook

- Non-collinear SIDIS Dihadron production provides unique access to
 - Strange quark distribution and fragmentation
 - Testing the Lund/Artru model
- Future analysis need to use ϕ_R rather than $\phi_{R\perp}$ and include $\cos \vartheta$ dependence.
- New partial wave expansion
 - Alternate view greatly simplifies complexity
 - Easier to find "the Collins function" for vector mesons.
 - But is also powerful computational tool.
- All 18 TMD dihadron fragmentation functions are important
 - Hope e^+e^- machines extract all 18, not just 2 of the 5 collinear.
- Cross section for dihadrons can be directly computed from pseudo-scalar cross section, at any twist
- New Monte Carlo Generator is excellent testing ground for flavor and transverse momentum dependent distribution and fragmentation functions.

Backup Slides

Backup Slides

Relation with Previous Notation

 Comparing with similar trace definitions, e.g. PRD 67:094002 yields the relations

$$D_1\Big|_{Gliske} = \left[D_1 + i \frac{|\mathbf{R}||\mathbf{k}_T|}{M_h^2} \sin \vartheta \sin(\phi_R - \phi_k) G_1^{\perp} \right]_{other},$$
(1)
$$H_1^{\perp}\Big|_{Gliske} = \left[H_1^{\perp} + \frac{|\mathbf{R}|}{|\mathbf{k}_T|} \sin \vartheta e^{i(\phi_R - \phi_k)} \bar{H}_1^{\triangleleft} \right]_{other} = \frac{|\mathbf{R}|^2}{|\mathbf{k}_T|^2} H_1^{\triangleleft}\Big|_{other}.$$
(2)

• Inconsistencies in the literature between definitions of $H_1^{\swarrow}, \bar{H}_1^{\updownarrow}, H_1^{\backsim}$.

Extraction Method & Systematics

- Use maximum likelihood estimation to preform fit within each kinematic bin.
- Exact number of unpolarized and polarized terms to be included is not yet determined.
- Acceptance correction:
 - ► Use GMC_Trans to generate kinematic distribution, but flat in angles
 - ► Run GMC_Trans "no angular dependence" data through acceptance
 - Make Kernel Density Estimation (KDE) over angles within each kinematic bin
 - ► This is now an estimate of the effective acceptance function integrated over the bin.
 - Weight each data point by 1/KDE.
- Smearing effects and effectiveness of acceptance correction to be tested via "PEPSI Challenge"
 - Generate data using Pythia with RadGen & place through acceptance
 - ▶ Weight using angular portion of cross section via GMC_Trans or KDE of data.
 - Compare weighting 4π vs. acceptance + smearing.
- Linear extrapolate moments in mass sidebands to estimate background under VM peak, then perform background subtraction.