

Probing Strangeness in Hard Processes (PSHP2010)

Particle Identification at Belle II & Development of New Photodetectors

Toru lijima Kobayashi-Maskawa Institute (KMI) Nagoya University

October 20, 2010 Frascati, Italy

Contents

- Introduction
- Time-Of-Propagation Counter
- Proximity Focusing Aerogel RICH
- Summary

HAPD

G-APD (MPPC/SiPM)

Collaborators

• Japan:

Nagoya, Tokyo Metropolitan, Toho, Chiba, KEK

• Slovenia:

Josef Stefan Inst. Ljubljana, Maribor

 United States: Hawaii, Cincinnati

KEKB Upgrade

Motivation for PID upgrade

- To cope with increasing background.
 - □ TOF may not survive
 - □ ACC seems to be OK
- Improve separation for K/ π , and also for μ/π hopefully.
- Extend momentum coverage in the forward endcap.
 Endcap-ACC (n=1.03) functions only for flavor tagging in Belle
- Reduce material thickness, and more homogeneous distribution.
 - □ 30% in total = 18% (ACC) + 12% (TOF)
 - □ PMTs dominate for ACC

Physics Targets $\Box B \rightarrow \pi \pi / K \pi, D \pi / D K$ $\Box B \rightarrow \rho \gamma / K^* \gamma (b \rightarrow d \gamma / s \gamma)$ $\Box B \rightarrow K II, K \nu \nu$ $\Box Full reconstruction$

Less systematics for precise measurements

PID Strategy at Belle II

- To cope with increased background (present x ~20)
- To improve the performance.
 - Target: > 4 σ at 4 GeV/c
 - Novel Ring Imaging Cherenkov Counters
 w/ advanced radiator & photo-detection technologies

+ dE/dx for low momentum.

Impact of PID improvement

Key Technology: Photodetectors

- High gain, Q.E., C.E.
- Good time resolution
- Good effective area

in magnetic field (1.5T)

MCP-PMT

Micro-channel-plate PMT HAPD

Hybrid Avalanche Photodiode

Geigermode-APD

	PMT	MCP-PMT	HPD / HAPD	Geigermode-APD
Gain	>10 ⁶	∼ 10 ⁶	~ 10 ³	~ 10 ⁶
			X10~100 w/ APD	
Quantum Eff.	∼20%, ~400nm (bialkali)			> 50%, ∼ 600nm
Collection Eff.	70%	60%	100%	50%
Time resolution	~300ps	~30ps	∼150ps Depends on readout	<100ps To be checked
B-field immunity	×	\triangle Depends on angle		0
Problems		lifetime		Noise, size

Time-Of-Propagation Counter

Accurately polished quartz & precision timing

Quartz-based RICH

 Use of total internal reflection in accurately polished quartz bar. A concept was invented by B.Ratcliff et al.

Measurement coordinates

- DIRC (Detector of Internally Reflected Cherenkov light) NIM A479(2002)1 (X, Y)
- TOP (Time Of Propagation) Counter (X, TOP) NIM A453(2000)331
 Nagoya, Ohshima et al.

TOP counter

- Cherenkov ring imaging using timing information
- Idea developed by Nagoya (Ohshima et al.)
- Very compact, suitable for collider geometry.

Difference of path length → Difference of time of propagation (TOP) 150~200ps from TOP + TOF from IP with precise time resolution (s~40ps) for each photon

Simulation 2GeV/c, θ =90 deg.

had. int.

Focusing TOP

- Remaining chromatic effect makes ~100ps fluctuation for TOP.
- Use λ dependence of Cherenkov angle to correct chromaticity
- \rightarrow Focusing system to measure θ_c
 - $-\lambda \leftarrow \theta_{c} \leftarrow y$ position
 - Reconstruct ring image from 3D informations (time, x and y).

MCP-PMT

- Micro-Channel-Plate
 - Tiny electron multipliers
 - Diameter ~10μm, length ~400μm
 - High gain
 - ~10⁶ for two-stage type
 - \rightarrow Fast time response

Pulse raise time ~500ps, TTS < 50ps

can operate under high magnetic field (~1T)

MCP-PMT

Developed by Nagoya and Hamamatsu

- Square-shape multi-anode MCP-PMT
 - Multi-alkali photo-cathode
 - Single photon detection
 - Fast raise time: ~400ps
 - Gain=1.5x10⁶ @B=1.5T
 - T.T.S.(single photon): ~35ps @B=1.5T
 - Position resolution: <5mm
- Semi-mass-production (14 PMTs)

SL10 basic performance (for single photon)

Confirmed gain > 10^6 and TTS = $30ps(\sigma)$ In B=1.5T magnetic field.

MCP-PMT Lifetime

- Feedback of ions from MCP surface or out gases causes PC deterioration.
- Aluminum protection layer (either at 1st MCP or 2nd MCP) can be applied to block IFB at some loss of signal efficiency or gain.

	Belle	Belle II
Luminosity (/cm2/s)	1x1034	8x1035
Num. of detected photons (/cm2/s)	3400	68000
Output Charge(mC/ cm2/year)	~6	~120

Lifetime for CT0790 & YA0071

SL10 Lifetime

QE variation

□ <10% drop at 350mC/cm² ; sufficient lifetime

Beam Test Results

- 2GeV electron at Fuji beam line.
- Real size quartz and MCP-PMT MCP-PMT: Multi-alkali p.c., C.E.=60%

19

Final System

- MCP-PMT
 - 4x4 channel anode
 - Reduction of occupancy
 - Increase in Npe
 - Super bialkali photocathode
 - QE: 20% → 30% (or more)
 - Arranged in 2 layers
- Electronics
 - New ASIC chips (BLAB3) for very high-speed waveform sampling.

Proximity Focusing Aerogel RICH

Highly transparent aerogel + Photon Imaging

Belle II Proximity Focusing Aerogel RICH

- Aerogel radiator (n~1.05, ~2cm)
 + photodetector (Δx ~ 5mm)
- Proximity focusing geometry
 - □ No mirror complex.
 - Suitable for collider and space experiments.
- >4σ K/π for 0.7
 @ 4GeV/c, θ(π)=310mrad. θ(π)-θ(K)=23mrad.
- Distance between aerogel to photodetector = 200mm.
- Track Incident angles = 17-34deg.

Aerogel Radiator

- Developed by collaboration w/ Matsushita.
- Hydrophobic for long term stability
- 2005: Improved transmission by new recipie.

Glass case

RICH with Multiple Radiators

NIM A548(2005)383

- Demonstration of principle
 - □ 4×4 array of H8500 (85% effective area)

 π/K separation with focusing configuration ~ 4.8 σ @4GeV/c

Hybrid avalanche photo-detector (HAPD) developed with Hamamatsu Photonics

Single Photon Response

Clear single photon signal observed

QE Improvement

Trial being made to apply the SBA technology to HAPD photc QE history for produced HAPD samples 40 [%] 40 Efficiency 35 3 35 30 30 30 25 Photocathode Quantum 25 20 25 20 25 20 15 36 **H**15 15 10 QE(Peak) 10 10 5 QE(400nm) 5 0 **SHP105 SHP107 SHP108** SHP109 SHP110 **SHP112 SHP113** SHP115 SHP116 SHP117 **SHP118** SHP119 **SHP106** SHP112 0 14 x(point) 12 300 Serial Number

HAPD w/QE(400nm) >30% possible !

HAPD Front-end Electronics

- Custom-made ASIC chips have been developed for 144ch HAPD.
 - manage ~80K channels
 - prototyping almost completed after several iterations

Response in Magnetic Field

Image distortion near the wall can be removed in the magnetic field.

Electron Back-scattering

 Photoelectrons back-scattered onto the APD surface : significantly reduced when B-field turned on

Residual spread can be considered as other effect such as light reflection

xy ch. 57

HAPD Aging

Neutron Irradiation Test

 Estimated neutron dose = 1x10¹² neutron/cm² for 10 years in Belle II detector.

 \rightarrow Bulk damage (lattice deficits)

- Neutron irradiation tests are carried out using a research reactor ("Yayoi" at U.Tokyo).
- Observed increase of leak currents
 → Noise
- Single-photons can be detected by optimizing the readout (shaping time, bombarding HV).
- APD w/ thinner p-layer are being tested to minimize the effect.

250 nsec peaking time + HV 8.5kV

Beam Test Results w/ HAPD

"focusing" configuration of 2 aerogel layers.

20mm / each

□ σ_{ph} = 13.5mrad. □ <N_{pe}>=15.3 ➡~6σ K/π @ 4GeV/c

XSlight dependence on the track incident condition.

Other Possibilities

MCP-PMT

- High gain (~10⁶)
- Good time resolution(~50ps/p.e.)
- Stable operation.

Need

- $\Box\,$ Smaller pore size (25 μ \rightarrow <10 $\mu)$
- □ Better collection eff.
- Lifetime ?

Geiger-mode APD

- High gain(~10⁶)
- High Q.E.(>50%)
- B-field immunity independent of the direction.
- Concerns
 - □ High noise rate (~200KHz/mm)
 - □ Size (~1×1mm² \rightarrow 3×3mm²)
 - Radiation damage ?

BURLE 85011-501

RICH w/ TOF Capability

- Possible PID improvement in low momentum region.
- Two timings can be used;
 - "Ring hit" : Cherenkov photons from aerogel.

 $\sigma_{photon} \sim 60 ps \implies \sigma_{track} \sim 60 ps/sqrt(9) = 20 ps$

- "Window hit": Cherenkov photons from glass window of PMT $\sigma_{\rm track}$ ~10ps possible (from the TOF R&D @ Nagoya).

Beam Test w/ Burle MCP-PMT

Time resolution for "window hits" (Time walk corrected)

TDC count(/25psec)

G-APD for RICH

Large advantage over other photodetectors

- Higher PDE (photo detection efficiency) Expected Npe (n=1.03,1cm) 17 for MPPC(HC100) 4.1 for PMT (QE_{peak}=25%, CE=70%)
- Complete immunity to B-field

Concerns

- High frequency noise.
- Small size.

• Rad. hardness

Beam Test Results

MPPC array on 3D stage Aerogel n=1.03, d=10mm

- Test w/ 120GeVπ beam at CERN
- Detector module with 8x8 array of SMD MPPCs at 2.54 mm pitch.
- Light guides were machined from plastic (HERA-B lens material).
- Hits detected by multi-hit TDC
 - total noise rate ~ 35MHz (~600kHz/ MPPC, ~2.4MHz/ch.)
 - Time window of 5ns around the peak.
- Measured number of photons (extrapolated to full ring)
 - 1.6 w/o LG, 3.7 w/ LG

X5 (if n=1.05,4cm) X2 (if polished LG)

Npe~37 w/ LG ?!!!

w/o LG

Summary

- Belle II employs RICH detectors to improve PID (K/ π in GeV region);
 - TOP counter w/ focusing for barrel
 - Proximity focusing aerogel RICH for forward-endcap.
- Novel ideas are employed to overcome the performance limitation;
 - TOP w/ focusing \rightarrow Chromatic dispersion
 - A-RICH w/ multiple radiators \rightarrow Emission point uncertainty.
- New multi-pixel photodetectors have been developed;
 - MCP-PMT for TOP
 - HAPD for A-RICH
- R&Ds are nearly completion, and designs are being finalized.
- Production of components (photodetectors, radiators etc.) are starting.

Stay Tuned !

Japan, Korea, Spain, Germany, Chez, Polland, Australia, Austria, US, India

Readout Electronics

Hawaii

- Highly integrated readout
- High-speed waveform sampling
 - Buffered LABRADOR •

TABLE II: BLAB2 ASIC Specifications.

Item	Value	
Photodetector Input Channels	16	
Linear sampling arrays/channel	2* 6	
Storage cells/linear array	512 10)2
Sampling speed (Giga-samples/s)	2.0 - 10.0	
Outputs (Wilkinson)	32	

BLAB2 ASIC

BLAB2 ASIC works fine. 12ps timing resolution →BI AB3 ASIC Higher sampling rate I ower noise \rightarrow Better time resol.

Measured timing jitter between two channels (same BLAB2).

Integrated Photodetector packaging

Quartz bars / Mirrors

- Required specifications;
 - Synthetic fused silica (ex; Corning 7980, Shin-etsu Sprasil)
 - Index tolerance: ±0.001
 - Flatness: 10λ over full aperture
 - Roughness (r.m.s.):5 Å
 - Angle bet. planes: 90±1/60deg.
 - Chamfer: < 0.20mm
- Candidate providers;
 - Okamoto Optics (Japan)
 - Zygo, OSI, ... (US)

(probably) need two providers for in-time construction.

Nagoya, Cincinnati Consultation to SLAC.

 Δ thick = $\lambda/2$

Structure designing

Nagoya, Hawaii, KEK

