Aurore Courtoy -INFN Pavia

 withAlessandro Bacchetta
Marco Radici

Flavor decomposition of Dihadron Fragmentation Function and

 its relevance for Transversity
Transverse Spin \& TMDs

From DIS to Semi-Inclusive DIS

- 3 leading-twist PDFs:

- Transversity not accessible through inclusive DIS
- chiral-odd
- we go to Semi Inclusive DIS
- one more variable \mathbf{k}_{\perp}
- Lorentz expansion of all the possible functions
- birth of TMDs

Ways to Transversity

SIDIS on pi

TMD factorization

- Convolution
- Soft factors
- Evolution
- Complex universality
$d \sigma \propto \sum_{q}\left[h_{1}^{q} \otimes H_{1}^{\perp q}\right]\left(x, z, P_{h \perp}^{2}\right)$
chiral-odd partner

Ways to Transversity

SIDIS on p

TMD factorization

- Convolution
- Soft factors
- Evolution
- Complex universality
$d \sigma \propto \sum_{q}\left[h_{1}^{q} \otimes H_{1}^{\perp q}\right] \underset{\sim}{\left(x, z, P_{h \perp}^{2}\right)}$

Ways to Transversity

SIDIS on p

Ways to Transversity

SIDIS on p

Transverse Spin from Fragmentation Functions

Distribution of hadrons inside the jet
\longrightarrow Direction of the transverse polarization of the fragmenting quarks
Also unpolarized
(6 TMD FF $D_{1}^{q \rightarrow h}\left(z, \kappa_{T}^{2}\right)$

- DiFF

$$
D_{1}^{q \rightarrow h_{1} h_{2}}\left(z_{1}, z_{2}, R_{T}^{2}\right)
$$

Transverse Spin from Fragmentation Functions

Interference Fragmentation Functions

$$
H_{1, q \rightarrow h_{1} h_{2}}^{\varangle}\left(z_{1}, z_{2}, R_{T}^{2}\right)
$$

relates transverse polarization of the fragmenting quark to angular distribution of the hadron pairs in the transverse plane
\checkmark Naive T-odd ; chiral-odd
\checkmark Does not vanish if integrated over transverse momentum \mathbf{k}_{\perp}
\checkmark The two hadrons must be distinguishable

Framework for DiFF

SIDIS on $\mathrm{p} \uparrow$

Collinear factorization

- Universality
- No convolution
- Evolution understood

e+e- to pions

$\mathrm{pp} \uparrow$ to pions

Є+e- : q9 correlator for DiFF

$$
d \sigma \propto \frac{\alpha^{2}}{Q^{6}} L_{\mu \nu} W_{4 h}^{\mu \nu}
$$

Boer, Jakob, Radici, PRD 67 (03) Bacchetta, Radici , PRD 67(03)

$$
W_{4 h}^{\mu \nu} \propto \sum_{a} \int d \mathbf{k}_{T} d \overline{\mathbf{k}}_{T} \delta^{2}() \operatorname{Tr}\left[\left.\left.\int d \bar{k}^{-} \bar{\Delta}\right|_{\bar{k}+\ldots} \gamma^{\mu} \int d k^{+} \Delta\right|_{k^{-}-\ldots} \gamma^{\nu}\right]
$$

Є+e- : q9 correlator for DiFF

Boer, Jakob, Radici, PRD 67 (03)

Bacchetta, Radici , PRD 67(03)

$$
\begin{aligned}
& \mathcal{P}_{-} \Delta_{a}\left(z, \cos \theta, M_{h}^{2}, \phi_{R}\right) \gamma^{-} \\
& =\frac{2|\vec{R}|}{8 \pi M_{h}}\left(D_{1}^{a}\left(z, \zeta(\cos \theta), M_{h}^{2}\right)+i H_{1}^{\varangle a}\left(z, \zeta(\cos \theta), M_{h}^{2}\right) \frac{|\vec{R}|}{M_{h}} \sin \theta \gamma^{\mu} n_{\mu}\right) \mathcal{P}_{-}
\end{aligned}
$$

Є+e- : q9 correlator for DiFF

Boer, Jakob, Radici, PRD 67 (03) Bacchetta, Radici , PRD 67(03)

$$
\mathcal{P}_{-} \Delta_{a}\left(z, \cos \theta, M_{h}^{2}, \phi_{R}\right) \gamma^{-} \quad \text { Integrated over kT }
$$

$$
\frac{2|\vec{R}|}{M_{h}} F_{1}\left(z, \zeta(\cos \theta), M_{h}^{2}\right)=\sum_{n} F_{1, n}\left(z, M_{h}^{2}\right) P_{n}(\cos \theta)
$$

Physics of the DiFF

Main approximation:

 truncation of the partial wave analysis up to 2nd order$\Rightarrow L=0,1$ relative partial waves
\Rightarrow terms $\propto 1, \cos \vartheta, \sin \vartheta, \cos \vartheta \sin \vartheta$
s-wave \rightarrow unpolarized
interference $b /$ w unpolarized pair (s-wave) and longitudinally pol. pair (p-wave)
$D_{1}^{q \rightarrow h_{1} h_{2}}\left(z_{1}, z_{2}, R_{T}^{2}\right) \quad \rightarrow$ sor p waves
$H_{1, q \rightarrow h_{1} h_{2}}^{\varangle}\left(z_{1}, z_{2}, R_{T}^{2}\right) \quad \rightarrow$ interf. s \& p waves

The Asymmetiry in ete-

$$
A\left(\cos \theta_{2}, z, M_{h}^{2}, \bar{z}, \bar{M}_{h}^{2}\right)=\frac{\left\langle\cos \left(\phi_{R}+\phi_{\bar{R}}\right)\right\rangle}{\langle 1\rangle}
$$

$$
A^{\cos \left(\phi_{R}+\phi_{\bar{R}}\right)}\left(\cos \theta_{2}, z, M_{h}^{2}, \bar{z}, \bar{M}_{h}^{2}\right) \propto \frac{\sum_{q} e_{q}^{2} H_{1, q}^{\varangle}\left(z, M_{h}^{2}\right) H_{1, q}^{\varangle}\left(\bar{z}, M_{h}^{2}\right)}{\sum_{q} e_{q}^{2} D_{1, q}\left(z, M_{h}^{2}\right) \bar{D}_{1, q}\left(\bar{z}, \bar{M}_{h}^{2}\right)}
$$

$\checkmark Q^{2} \sim 100 \mathrm{GeV}^{2}$
\checkmark (z, M_h) correlation
$\checkmark 4$ plots
\Rightarrow limited range in z
\checkmark large errors
$\checkmark 8 \times 8$ (Mh1, Mh2)
$\checkmark 9 x 9(z 1, z 2)$

\Rightarrow red curves:
spectator model result

Data not published yet

Peaks at
i. $\quad M_{h} \sim m_{\rho}=770 \mathrm{MeV}$
ii. $\quad M_{h} \sim m_{\omega}=782 \mathrm{MeV}$
iii. broad peak at $\quad M_{h} \sim 500 \mathrm{MeV}$

Most prominent channels at $M_{h} \leq 1.8 \mathrm{GeV}^{2}$

1. Background

$$
q \rightarrow \pi^{+} \pi^{-} X_{1}
$$

2. ρ production

$$
q \rightarrow \rho X_{2} \rightarrow \pi^{+} \pi^{-} X_{2}
$$

3. ω production

$$
q \rightarrow \omega X_{3} \rightarrow \pi^{+} \pi^{-} X_{3}
$$

$$
q \rightarrow \omega \pi^{0} X_{4}^{\prime} \rightarrow \pi^{+} \pi^{-} \pi^{0} X_{4}^{\prime}
$$

undetected $\pi 0$

Monte Carlo from BELLE

Unpolarized cross section

Monte Carlo from BELLE

Unpolarized cross section

Monte Carlo from BELLE

Unpolarized cross section

Monte Carlo from BELLE

Monte Carlo from BELLE

Unpolarized cross section

Monte Carlo from BELLE

Unpolarized cross section

e.g. uds from ω channels

-4 zbins

- Flavor decomposition
- uds
- charm
ρ channel
ω channels
non resonant contrib.

NB: in our analysis, we neglect resonant channels contribution to the charm

Unpolarized Cross Section

Constraints on the Functional Form from

1. the kinematics
2. the ss and pp interference-like
3. physics model-inspired

I want to fit:
with a functional form like:

$$
d \sigma \propto 2 \frac{6 \alpha^{2}}{Q^{2}} \frac{\left\langle 1+\cos ^{2} \theta_{2}\right\rangle}{2 M_{h}} f_{D_{1}}^{a}\left(z, M_{h}\right) \int_{0.2}^{1} \int_{0.28}^{2} f_{D_{1}}^{\bar{a}}\left(\bar{z}, \bar{M}_{h}\right)
$$

$$
f_{D_{1}}^{a}\left(z, M_{h}\right)=2 M_{h} z^{2} \sum_{a} \sqrt{e_{a}^{2} D_{1 a}^{s s+p p}\left(z, M_{h}^{2}\right)}
$$

Error on the MC: Jnumber of events Functional form inside de integration routine Propagation of errors ...

Unpolarized Cross Section

Constraints on the Functional Form from

1. the kinematics
2. the ss and pp interference-like
3. physics model-inspire^

Constraints coming while determining the Functional Form

with a functional form

Error on the MC: Jnumber of events Functional form inside de integration routine Propagation of errors ...

A.C., Baccielite anuc Radici

 in preparation
uds from p

$D_{1, \rho}^{u d s}\left(z, M_{h}\right) \propto A \sqrt{M_{h}^{2}-4 m_{\pi}^{2}} \times\left(1-R^{3}\right)^{B} z^{C} \times \frac{\exp f\left(M_{h}, z\right)}{\left(M_{h}^{2}-m_{\rho}^{2}\right)^{2}+m_{\rho}^{2} \Gamma_{\rho}^{2}}$

$$
\frac{\exp f\left(M_{h}, z\right)}{\left.2-m_{\rho}^{2}\right)^{2}+m_{\rho}^{2} \Gamma_{\rho}^{2}}
$$

A.C., Baccirilitelna Radioi, in preparation

Global fit result for $\mathrm{z}=0.25$

uds from w

($z, M _h$) fit of the $4 z$-bins

$D_{1, \omega}^{u d s}\left(z, M_{h}\right) \propto \sqrt{M_{h}^{2}-4 m_{\pi}^{2}}\left(A \frac{(1-z)^{B} z^{C}}{\left(M_{h}-m_{\omega}^{2}\right)^{2}+m_{\omega}^{2} \Gamma_{\omega}^{2}}\right.$ $\left.+D \sqrt{M_{h}^{2}-4 m_{\pi}^{2}}(1-z)^{E} z^{F} \times \frac{\exp f\left(z, M_{h}\right) \exp f^{\prime}(z)}{\left(M_{h}^{2}-G^{2}\right)^{2}+H^{2}}\right)$

$\chi^{2} /$ d.o.f ~ 1.3

A.C., Baccheliatanu Radici, in preparation

$$
D_{1, b k g d}^{u d s}\left(z, M_{h}\right) \propto \sqrt{M_{h}^{2}-4 m_{\pi}^{2}} A(1-z)^{B} z^{C} e^{f\left(z, M_{h}\right)} e^{f^{\prime}(z)}
$$

 in preparation
(z, M_{-}h) fit
of the 4 -bins

Polarized Cross Section

Constraints on the Functional Form from

1. the kinematics
2. the sp interference-like
3. physics model-inspired

1 want to fit:
with a functional form like:

$$
\begin{aligned}
& d \sigma \propto \frac{6 \alpha^{2}}{Q^{2}} \frac{\pi^{2}}{16} \frac{\left\langle\sin ^{2} \theta_{2}\right\rangle}{2 M_{h}} f_{H_{1}^{\triangleleft}}^{a}\left(z, M_{h}\right) \int_{0.2}^{1} \int_{0.28}^{2} f_{H_{1}^{\top}}^{\bar{a}}\left(\bar{z}, \bar{M}_{h}\right) \\
& f_{H_{1}^{\triangleleft}}^{a}\left(z, M_{h}\right)=2 M_{h} z^{2} \frac{|\vec{R}|}{M_{h}} \sum_{a} e_{a}^{2} H_{1 a}^{s p}\left(z, \xi, M_{h}^{2}\right) \\
&=z^{2} \sqrt{M_{h}^{2}-4 m_{\pi}^{2}} \sum_{a} e_{a}^{2} H_{1 a}^{s p}\left(z, M_{h}^{2}\right)
\end{aligned}
$$

Error on σ : error on the data \& error on the fit of unpol. σ 1st step: no integration but bin value from experiment. Propagation of errors

Polarized Cross Section

Constraints on the Functional Form from

1. the kinematics
2. the sp interference-like
3. physics model-inspired

I want to fit:
with a functional form like:

$$
\begin{aligned}
& d \sigma \propto \frac{6 \alpha^{2}}{Q^{2}} \frac{\pi^{2}}{16} \frac{\left\langle\sin ^{2} \theta_{2}\right\rangle}{2 M_{h}} f_{H_{1}^{\triangleleft}}^{a}\left(z, M_{h}\right) \int_{0.2}^{1} \int_{0.28}^{2} f_{H_{1}^{\triangleleft}}^{\bar{a}}\left(\bar{z}, \bar{M}_{h}\right) \\
& f_{H_{1}^{\varangle}}^{a}\left(z, M_{h}\right)=2 M_{h} z^{2} \frac{|\vec{R}|}{M_{h}} \sum_{a} e_{a}^{2} H_{1 a}^{s p}\left(z, \xi, M_{h}^{2}\right) \\
&=z^{2} \sqrt{M_{h}^{2}-4 m_{\pi}^{2}} \sum_{a} e_{a}^{2} H_{1 a}^{s p}\left(z, M_{h}^{2}\right)
\end{aligned}
$$

further assumption
$H_{1}^{\varangle u}\left(z, M_{h}\right)=f\left(z, M_{h}\right) D_{1}^{u}\left(z, M_{h}\right)$
Error on σ : error on the data \& error on the fit of unpol. σ 1st step: no integration but bin value from experiment.
Propagation of errors

IFF from the Asymmetry

Fit of the sum over flavors of

$$
\sum_{a} e_{a}^{2} H_{1 a}^{\varangle s p}\left(z, M_{h}^{2}\right) \bar{H}_{1 \bar{a}}^{\varangle s p}\left(\langle\bar{z}\rangle,\left\langle\bar{M}_{h}^{2}\right\rangle\right)
$$

Assumptions

- role of flavor decomposition from UNPOLARIZED FF

$$
\begin{aligned}
& D_{1}^{u}\left(z, M_{h}\right)=D_{1}^{\bar{u}}\left(z, M_{h}\right)=D_{1}^{d}\left(z, M_{h}\right)=D_{1}^{d}\left(z, M_{h}\right) \\
& D_{1}^{s}\left(z, M_{h}\right)=D_{1}^{\bar{s}}\left(z, M_{h}\right) \\
& D_{1}^{c}\left(z, M_{h}\right)=D_{1}^{\bar{c}}\left(z, M_{h}\right)
\end{aligned}
$$

Montecarlo uds-c

- Two (or more) scenarios

$$
\begin{aligned}
& \text { I. } . \quad D_{1}^{s}\left(z, M_{h}\right)=0 \\
& \text { II. } . D_{1}^{s}\left(z, M_{h}\right)=D_{1}^{u}\left(z, M_{h}\right)
\end{aligned}
$$

$\underline{H_{1}<}$

- flavor decomposition

$$
\begin{aligned}
& H_{1}^{\varangle u}\left(z, M_{h}\right)=H_{1}^{\varangle d}\left(z, M_{h}\right)=-H_{1}^{\varangle d}\left(z, M_{h}\right)=-H_{1}^{\varangle \bar{u}}\left(z, M_{h}\right) \\
& H_{1}^{\varangle s}\left(z, M_{h}\right)=H_{1}^{\varangle \bar{s}}\left(z, M_{h}\right)=0 \\
& H_{1}^{\varangle c}\left(z, M_{h}\right)=H_{1}^{\varangle \bar{c}}\left(z, M_{h}\right)=0
\end{aligned}
$$

Flavor Decomposition: The Scenarios

Flavor Decomposition: The Scenarios

Flavor Decomposition: The Scenarios

Flavor Decomposition: The Scenarios

Flavor Decomposition: The Scenarios

Flavor Decomposition: The Scenarios

Flavor decomposition influences $f(z, M h)$

Strange and Transversity...

SIDIS on $\mathrm{p} \uparrow$

$$
A_{U T}^{\sin \left(\phi_{R}+\phi_{S}\right) \sin \theta}\left(x, y, z, M_{h}^{2}\right) \propto f(y) \frac{\sum_{q} e_{q}^{2} h_{1}^{q}(x)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x)} \times \frac{H_{1}^{\varangle, u}\left(z, M_{h}\right)}{D_{1}^{u}\left(z, M_{h}\right)}
$$

- then we are left with a one variable fit

Strange and Transversity...

SIDIS on $\mathrm{p} \uparrow$

$$
A_{U T}^{\sin \left(\phi_{R}+\phi_{S}\right) \sin \theta}\left(x, y, z, M_{h}^{2}\right) \propto f(y) \frac{\sum_{q} e_{q}^{2} h_{1}^{q}(x)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x)} \times\left(\frac{H_{1}^{\varangle, u}\left(z, M_{h}\right)}{D_{1}^{u}\left(z, M_{h}\right)}\right.
$$

Flavor decomposítion scenario 1. and 11.

- then we are left with a one variable fit

Strange and Transversity...

SIDIS on p \uparrow

$$
A_{U T}^{\sin \left(\phi_{R}+\phi_{S}\right) \sin \theta}\left(x, y, z, M_{h}^{2}\right) \propto f(y) \frac{\sum_{q} e_{q}^{2} h_{1}^{q}(x)}{\sum_{q} e_{q}^{2} f_{1}^{q}(x)} \times \frac{H_{1}^{\varangle, u}\left(z, M_{h}\right)}{D_{1}^{u}\left(z, M_{h}\right)}
$$

Flavor decomposition of $f_{1}(x)$ Depends on the parametrization we use To be studied...

Flavor decomposition scenario 1. and 11.

- then we are left with a one variable fit

Strange and Transversity...

SIDIS on p \uparrow

$$
A_{U T}^{\sin \left(\phi_{R}+\phi_{S}\right) \sin \theta}\left(x, y, z, M_{h}^{2}\right) \propto f(y) \frac{\sum_{q} e_{q}^{2} h_{1}^{q}(x)}{\sum_{q} e_{q}^{f_{1}^{q}}(x)} \times \frac{H_{1}^{\varangle, u}\left(z, M_{h}\right)}{D_{1}^{u}\left(z, M_{h}\right)}
$$

Flavor decomposition of $f 1(x)$ Depends on the parametrization we use To be studied...

> Flavor decomposition scenario 1. and 11.

- then we are left with a one variable fit

Back to the Transversity...

HERMIMES

Figure 2: The top panels show $A_{U \perp}^{\sin \left(\phi_{R \perp}+\phi_{S}\right) \sin \theta}$ versus $M_{\pi \pi}, x$, and z. The bottom panels show the average values of the variables that were integrated over. For the dependence on x and z, $M_{\pi \pi}$ was constrained to the range $0.5 \mathrm{GeV}<M_{\pi \pi}<1.0 \mathrm{GeV}$, where the signal is expected to be largest. The error bars show the statistical uncertainty. A scale uncertainty of 8.1% arises from the uncertainty in the target polarization. Other contributions to the systematic uncertainty are summed in quadrature and represented by the asymmetric error band.

Di-hadron Fragmentation Functions

probability for (un-)polarized quarks to fragment into the hadron pair (h1 h2)

In particular, IFF

relates transverse polarization of the fragmenting quark to angular distribution of the hadron pairs in the transverse plane

- Collinear factorization
- Universality
- No convolution
- Evolution understood

Di-hadron Fragmentation Functions

probability for (un-)polarized quarks to fragment into the hadron pair (h1 h2)

In particular, IFF

relates transverse polarization of the fragmenting quark to angular distribution of the hadron pairs in the transverse plane

Di-hadron Fragmentation Functions

probability for (un-)polarized quarks to fragment into the hadron pair (h1 h2)

In particular, IFF

relates transverse polarization of the fragmenting quark to angular distribution of the hadron pairs in the transverse plane

Flavor Decomposition

- Rôle on the param of H_{1}^{\varangle}
- Monte Carlo input
- Data for Kaons
- BaBar data

Di-hadron Fragmentation Functions

probability for (un-)polarized quarks to fragment into the hadron pair (h1 h2)

In particular, IFF

relates transverse polarization of the fragmenting quark to angular distribution of the hadron pairs in the transverse plane

Flavor Decomposition

- Rôle on the param of H_{1}^{\varangle}
- Monte Carlo input
- Data for Kaons
- BaBar data

DiFF way to Transversity

- We have fitted the D_{1} DiFF from the BELLE experiment
- We have almost extracted H_{1}^{\varangle} from the BELLE data
- Next step: Go down to SIDIS and extract Transversity

