Aurore Courtoy -INFN Pavia with Alessandro Bacchetta Marco Radici

Flavor decomposition of Dihadron Fragmentation Function and its relevance for Transversity **Probing Strangeness in Hard Processes**

19th of October 2010

LNF- Frascati

Tuesday, 19 October 2010

Transverse Spin & TMDs

From DIS to Semi-Inclusive DIS

► 3 leading-twist PDFs:

Transversity not accessible through inclusive DIS

► chiral-odd

- ▶ we go to Semi Inclusive DIS
 - \blacktriangleright one more variable \mathbf{k}_{\perp}
 - Lorentz expansion of all the possible functions
 - birth of TMDs

SIDIS on p[↑]

lepton lepton protor pion Collins FF $d\sigma \propto \sum_{q} [h_1^q \otimes H_1^{\perp q}](x, z, P_{h\perp}^2)$

TMD factorization

- Convolution
- Soft factors
- Evolution
- Complex universality

chiral-odd partner

TMD factorization

- Convolution
- Soft factors
- Evolution
- Complex universality

chiral-odd partner

SIDIS on p[↑]

Transverse Spin from Fragmentation Functions

Distribution of hadrons inside the jet

Direction of the transverse polarization of the fragmenting quarks

Tuesday, 19 October 2010

Transverse Spin from Fragmentation Functions

Interference Fragmentation Functions

$H_{1,q \to h_1 h_2}^{\triangleleft}(z_1, z_2, R_T^2)$

relates transverse polarization of the fragmenting quark to angular distribution of the hadron pairs in the transverse plane

✓ Naive T-odd ; chiral-odd

- \checkmark Does not vanish if integrated over transverse momentum $~{f k}_{\perp}$
- \checkmark The two hadrons must be distinguishable

Collins, Heppelman, Ladinsky, NPB420 (94)

Tuesday, 19 October 2010

Framework for DiFF

Collinear factorization

- Universality
- No convolution
- Evolution understood

Bacchetta, Ceccopieri, Mukherjee, Radici, PRD79 (09)

e+e- : qq correlator for DiFF

$$d\sigma \propto \frac{\alpha^2}{Q^6} L_{\mu\nu} W_{4h}^{\mu\nu}$$

$$W_{4h}^{\mu\nu} \propto \sum_a \int d\mathbf{k}_T d\bar{\mathbf{k}}_T \,\delta^2() \operatorname{Tr}\left[\int d\bar{k}^- \bar{\Delta}|_{\bar{k}^+ \dots} \,\gamma^{\mu} \int dk^+ \Delta|_{k^- \dots} \,\gamma^{\nu}\right]$$

e+e- : qq correlator for DiFF

e+e- : qq correlator for DiFF

Partial Wave

decomposition

Boer, Jakob, Radici, PRD 67 (03) Bacchetta, Radici, PRD 67(03) $d\sigma \propto \frac{\alpha^2}{O^6} L_{\mu\nu} W^{\mu\nu}_{4h}$ $W_{4h}^{\mu\nu} \propto \sum \int d\mathbf{k}_T d\bar{\mathbf{k}}_T \,\delta^2() \operatorname{Tr}\left[\int d\bar{k}^- \bar{\Delta}|_{\bar{k}^+ \cdots} \,\gamma^\mu \int dk^+ \Delta|_{k^- \cdots} \,\gamma^\nu\right]$ Integrated over kT $\mathcal{P}_{-}\Delta_a(z,\cos\theta, M_h^2, \phi_R) \gamma^ =\frac{2|\vec{R}|}{8\pi M_{h}}\left(D_{1}^{a}(z,\zeta(\cos\theta),M_{h}^{2})+iH_{1}^{\triangleleft a}(z,\zeta(\cos\theta),M_{h}^{2})\frac{|\vec{R}|}{M_{h}}\sin\theta\gamma^{\mu}n_{\mu}\right)\mathcal{P}_{-}$ $\frac{2|\vec{R}|}{M_h} F_1\left(z,\zeta(\cos\theta),M_h^2\right) = \sum F_{1,n}\left(z,M_h^2\right) P_n(\cos\theta)$ $\pi^+\pi^-$ CM frame n≤2 P_h

Physics of the DiFF

Main approximation:

truncation of the partial wave analysis up to 2nd order

The Asymmetry in e+e-

Artru, Collins, ZPC 69 (96) Boer, Jakob, Radici, PRD 67 (03)

a12 asymmetry from BELLE

courtesy of BELLE

Tuesday, 19 October 2010

Invariant Mass Spectrum for q→ (π+π-)X

Most prominent channels at $M_h \leq 1.8 \text{GeV}^2$

1. Background

$$q \to \pi^+ \pi^- X_1$$

2. p production

$$q \to \rho X_2 \to \pi^+ \pi^- X_2$$

3. ω production

$$q \to \omega X_3 \to \pi^+ \pi^- X_3$$

$$q \to \omega \pi^0 X_4' \to \pi^+ \pi^- \pi^0 X_4'$$

undetected $\pi 0$

iii. broad peak at $M_h \sim 500 {
m MeV}$

 $M_h \sim m_\rho = 770 \mathrm{MeV}$

ii. $M_h \sim m_\omega = 782 \mathrm{MeV}$

I can take into account model predictions... A. Bacchetta, M. Radici, PRD74 (06)

Peaks at

i.

courtesy of BELLE Collaboration

courtesy of BELLE Collaboration

courtesy of BELLE Collaboration

courtesy of BELLE Collaboration

NB: in our analysis, we neglect resonant channels contribution to the charm

Unpolarized Cross Section

$$d\sigma \propto 2\frac{6\alpha^2}{Q^2}\frac{\langle 1+\cos^2\theta_2\rangle}{2M_h}f^a_{D_1}(z,M_h)\int_{0.2}^1\int_{0.28}^2 f^{\bar{a}}_{D_1}(\bar{z},\bar{M}_h)$$

with a functional form like:

$$f_{D_1}^a(z, M_h) = 2M_h z^2 \sum_a \sqrt{e_a^2 D_{1a}^{ss+pp}(z, M_h^2)}$$

Unpolarized Cross Section

uds from p

Tuesday, 19 October 2010

Tuesday, 19 October 2010

Polarized Cross Section

Error on σ : error on the data & error on the fit of unpol. σ **1st step**: no integration but bin value from experiment. Propagation of errors ...

Polarized Cross Section

Error on σ : error on the data & error on the fit of unpol. σ **1st step**: no integration but bin value from experiment. Propagation of errors ...

IFF from the Asymmetry

Fit of the sum over flavors of

$$\sum_{a} e_a^2 H_{1a}^{\triangleleft sp}(z, M_h^2) \bar{H}_{1\bar{a}}^{\triangleleft sp}(\langle \bar{z} \rangle, \langle \bar{M}_h^2 \rangle)$$

Assumptions

role of flavor decomposition from UNPOLARIZED FF

MonteCarlo uds-c

Two (or more) scenarios

$$| \dots D_1^s(z, M_h) = 0$$

 $||_{...} D_1^s(z, M_h) = D_1^u(z, M_h)$

$$D_1^u(z, M_h) = D_1^u(z, M_h) = D_1^d(z, M_h) = D_1^d(z, M_h)$$
$$D_1^s(z, M_h) = D_1^{\bar{s}}(z, M_h)$$
$$D_1^c(z, M_h) = D_1^{\bar{c}}(z, M_h)$$

<u>H1<</u>

flavor decomposition

 $H_1^{\triangleleft u}(z, M_h) = H_1^{\triangleleft d}(z, M_h) = -H_1^{\triangleleft d}(z, M_h) = -H_1^{\triangleleft \bar{u}}(z, M_h)$ $H_1^{\triangleleft s}(z, M_h) = H_1^{\triangleleft \bar{s}}(z, M_h) = 0$ $H_1^{\triangleleft c}(z, M_h) = H_1^{\triangleleft \bar{c}}(z, M_h) = 0$

$$A_{UT}^{\sin(\phi_R + \phi_S)\sin\theta}(x, y, z, M_h^2) \propto f(y) \; \frac{\sum_q e_q^2 h_1^q(x)}{\sum_q e_q^2 f_1^q(x)} \times \frac{H_1^{\triangleleft, u}(z, M_h)}{D_1^u(z, M_h)}$$

▶ then we are left with a **one variable** fit

Scenarío I. and II.

then we are left with a one variable fit

then we are left with a one variable fit

then we are left with a one variable fit

Back to the Transversity...

Figure 2: The top panels show $A_{U\perp}^{\sin(\phi_{R\perp}+\phi_S)\sin\theta}$ versus $M_{\pi\pi}$, x, and z. The bottom panels show the average values of the variables that were integrated over. For the dependence on x and z, $M_{\pi\pi}$ was constrained to the range 0.5 GeV $< M_{\pi\pi} < 1.0$ GeV, where the signal is expected to be largest. The error bars show the statistical uncertainty. A scale uncertainty of 8.1% arises from the uncertainty in the target polarization. Other contributions to the systematic uncertainty are summed in quadrature and represented by the asymmetric error band.

COMPASS not published but ¿normalization factor? w.r.t HERMES data

probability for (un-)polarized quarks to fragment into the hadron pair (h1 h2)

In particular, IFF

relates transverse polarization of the fragmenting quark to angular distribution of the hadron pairs in the transverse plane

- Collinear factorization
- Universality
- No convolution
- Evolution understood

probability for (un-)polarized quarks to fragment into the hadron pair (h1 h2)

In particular, IFF

relates transverse polarization of the fragmenting quark to angular distribution of the hadron pairs in the transverse plane

probability for (un-)polarized quarks to fragment into the hadron pair (h1 h2)

In particular, IFF

relates transverse polarization of the fragmenting quark to angular distribution of the hadron pairs in the transverse plane

Flavor Decomposition

- ▶ Rôle on the param of H_1^{\triangleleft}
- ► Monte Carlo input
- Data for Kaons
- ▶ BaBar data

probability for (un-)polarized quarks to fragment into the hadron pair (h1 h2)

In particular, IFF

relates transverse polarization of the fragmenting quark to angular distribution of the hadron pairs in the transverse plane

Flavor Decomposition

- ▶ Rôle on the param of H_1^{\triangleleft}
- Monte Carlo input
- Data for Kaons
- BaBar data

DiFF way to Transversity

We have fitted the D_1 DiFF from the BELLE experiment

We have almost extracted H_1^{\triangleleft} from the BELLE data

Next step: Go down to SIDIS and extract Transversity