Hadronization in Cold Nuclear Matter

K. Gallmeister, U. Mosel

Model

Pythia, GiBUU, prehadronic FSI

Results

EMC@100-280 Hermes@27 CLAS@5 HARP, NA61/Shine

PSHP2010

Frascati, Oct 18-21, 2010

Observables, Experiments

$$R^{h}(z_{h},\ldots) = \frac{\frac{N_{h}(z_{h},\ldots)}{N_{e}(\ldots)}\Big|_{A}}{\frac{N_{h}(z_{h},\ldots)}{N_{e}(\ldots)}\Big|_{D}}$$

$$\Delta p_T^2 = \langle p_T^2 \rangle_A - \langle p_T^2 \rangle_D$$

Photonic:
$$\nu$$
, Q^2 , W , x_B ,...

Model

■ $\gamma^*N \rightarrow X$ using PYTHIA

additional:

- binding energies
- Fermi motion
- Pauli blocking

coherence length effects extended for exclusive channels

propagation of final state X within GiBUU transport model

http://gibuu.physik.uni-giessen.de

elastic/inelastic scatterings (coupled channels)

experimental acceptance

Model: Transport (GiBUU)

GiBUU: <u>Gi</u>eßen + <u>B</u>oltzmann-<u>U</u>ehling-<u>U</u>hlenbeck

$$\frac{\mathrm{d}f^{X}}{\mathrm{d}t} = \frac{\partial f^{X}}{\partial t} + \frac{\partial H}{\partial \vec{p}} \frac{\partial f^{X}}{\partial \vec{r}} - \frac{\partial H}{\partial \vec{r}} \frac{\partial f^{X}}{\partial \vec{p}} = I_{\mathrm{coll}}(f^{X}, f^{a}, f^{b}, \cdots)$$

$$1 \text{ particle phase space densities}$$

$$Hamiltonian \qquad H = H(f^{X}, f^{a}, f^{b}, \cdots)$$

$$Full \text{ coupled channel}$$

$$hadronic mean fields + potentials$$

Solved with "testparticle ansatz"

$$f^X = \sum_{i=1}^{n \times N^X} \delta(\vec{r} - \vec{r_i}) \delta(p - p_i)$$

local ensemble method = local collisions

61 baryons, 21 mesons

Results: EMC & Hermes

Results: EMC & Hermes

Times

here: averaged times in code: individual times

Hermes@27: A.Airapetian et al., NPB780(2007)1

CLAS@5, π^+ : selected (v,Q²) bins

Data:

- CLAS preliminary
- no error bars shown

Calculations:

- not tuned !!!
- no Fermi Motion (W<2 GeV possible)
- no potentials

As good as at higher energies !

Hermes@27: A.Airapetian et al., NPB780(2007)1

Hadronic FSI

Leading

FSI cross section

- Large z: diffractive φ
- Low/moderate z: production of secondaries

HARP, NA61/Shine

aim: adjust flux for ...

- MiniBooNE
- SciBooNE

K2K

understand hadronic FSI

proton, pion beam
beam energies: 3 – 30 GeV/c

critical test for hadronic fsi

elementary: $pp \rightarrow \pi^{\pm} X$

data: V. Blobel et al., Nucl. Phys. B69 (1974) 454

$\pi^{\pm} Pb \rightarrow \pi^{\pm} X$ (forward, 12 GeV/c)

data: M.G. Catanesi et al. (HARP), arXiv:0902.2105 [hep-ex]

forward production described very well

pion beam slightly better described than proton beam

$pA \rightarrow \pi^+ X$ (backward, 3 GeV/c)

data: M.G. Catanesi et al. (HARP), Phys. Rev. C 77 (2008) 055207

Official HARP vs. HARP-CDP

NA61/Shine

Conclusions

GiBUU:

- coupled channel transport code (semi classical)
- from some MeV to tens of GeV (Pythia v6.4 for high energy)
- I multi purpose: p, π, γ^*, v induced reactions Heavy Ion Collisions

pre-hadron cross section: linear in time (EMC,Hermes,CLAS)

Kaons/Antikaons critical test of interaction scenario

- Different production mechanism (leading/non-leading)
- Different hadronic FSI cross section

HARP, NA61/Shine: important for testing hadronic FSI

EIC@3+30: hadrons

EIC@3+30: π° vs. η

Figure 4. Multiplicity ratio for HERMES neutral pions from a Xenon target together with calculations in an energy loss model²⁹ calculation from 2007 and in an absorption model³⁰ for neutral pions and the eta meson. These calculations suggest that the comparison of η and π^0 will distinguish between these two reaction mechanisms.

Slow Neutrons & interaction point

Pauli Blocking

Evaporation, Binding etc.: GiBUU afterburner (Gaitanos)

Conclusions

Gibuu:

- coupled channel transport code (semi classical)
- from some MeV to tens of GeV (Pythia v6.4 for high energy)
- I multi purpose: p, π, γ^*, ν induced reactions Heavy Ion Collisions
- pre-hadron cross section: linear in time (EMC,Hermes,CLAS)
- Transverse momentum broadening
 - attenuation leads to broadening
 - medium modification of fragmentation parameters ???

EIC: important for testing FSI at beginning of hadronization

Cold Nuclear Matter as baseline for Heavy Ion Collisions

Conclusions

Gibuu:

- coupled channel transport code (semi classical)
- from some MeV to tens of GeV (Pythia v6.4 for high energy)
- I multi purpose: p, π, γ^*, ν induced reactions Heavy Ion Collisions
- pre-hadron cross section: linear in time (EMC,Hermes,CLAS)
- Transverse momentum broadening
 - attenuation leads to broadening
 - medium modification of fragmentation parameters ???

HARP: Critical test for hadronic FSI

Cold Nuclear Matter as baseline for Heavy Ion Collisions

Averaged Times

