Hard Electroproduction of Strangeness

P. Kroll

Fachbereich Physik, Univ. Wuppertal Frascati, October 2010

Outline:

- Exclusive Electroproduction of mesons
- What do we know about the GPDs?
- Results on vector meson production
- The GPD E
- Results on pseudoscalar mesons
- Summary

The $\gamma^* p \to VB$ amplitudes

consider handbag factorization for large Q^2 , W and small t; kinematics fixes skewness: $\xi \simeq \frac{x_{\rm Bj}}{2-x_{\rm Bj}}[1+m_V^2/Q^2] \simeq x_{\rm Bj}/2 + {\rm m.m.c.}$

$$\gamma^{*} \mathcal{M}_{\mu+,\mu+}(V) = \frac{e_{0}}{2} \left\{ \sum_{a} e_{a} \mathcal{C}_{V}^{aa} \langle H_{\text{eff}}^{g} \rangle_{V\mu} + \sum_{ab} \mathcal{C}_{V}^{ab} \langle H_{\text{eff}}^{ab} \rangle_{V\mu} \right\}$$

$$p \qquad p' \qquad \mathcal{M}_{\mu-,\mu+}(V) = -\frac{e_{0}}{2} \frac{\sqrt{-t'}}{M+m} \left\{ \sum_{a} e_{a} \mathcal{C}_{V}^{aa} \langle E^{g} \rangle_{V\mu} + \sum_{ab} \mathcal{C}_{V}^{ab} \langle E^{ab} \rangle_{V\mu} \right\}$$

 C_V^{ab} flavor factors, M(m) mass of B(p), $H_{eff} = H - \xi^2/(1 - \xi^2)E$ contributions from \widetilde{H} to T-T amplitude not shown electroproduction with unpolarized protons at small ξ : E not much larger than H (see below) $\Longrightarrow H_{eff} \to H$ $|M_{\mu-,\mu+}|^2 \propto t'/m^2$ neglected \Longrightarrow probes H (exception ρ^+)

trans. polarized target:probes $Im[\langle E \rangle^* \langle H \rangle]$ interferencepolarized beam and target:probes $Re[\langle H \rangle^* \langle \tilde{H} \rangle]$ interference

Subprocess amplitudes

 $F = H, E \quad \lambda$ parton helicities $\langle F \rangle_{V\mu}^{ab(g)} = \sum_{\lambda} \int d\bar{x} \mathcal{H}_{\mu\lambda,\mu\lambda}^{Vab(g)}(\bar{x},\xi,Q^2,t=0) F^{ab(g)}(\bar{x},\xi,t)$ $F_{p \to p}^{aa} = F^a$, $F_{p \to B}^{ab} = F^a - F^b$ $(a \neq b)$ (flavor symmetry f. ground state baryons) $\gamma^* \mathcal{M}_{\mathcal{V}}$ $\mathcal{H}^{Vab}_{\mu\lambda,\mu\lambda} = \int d\tau d^2 b \,\hat{\Psi}_{V\mu} \exp[-S] \hat{\mathcal{F}}^{ab}_{\mu\lambda,\mu\lambda}$ coll. Sudakov factor (Sterman et al) fact. $S \propto \ln \frac{\ln \left(\tau Q / \sqrt{2} \Lambda_{\rm QCD}\right)}{-\ln \left(b \Lambda_{\rm QCD}\right)} + \mathsf{NLL}$ LO pQCD LCWF: $\hat{\Psi}_{V\mu} \sim \Phi_V(\tau) \exp[-\tau (1-\tau) b^2 / 4a_{V\mu}^2]$ + quark trans. mom. $\hat{\mathcal{F}}$ FT of hard scattering kernel + Sudakov supp. \Rightarrow coll. appr. for $Q^2 \rightarrow \infty$ e.g. FT of $\propto e_a / [k_{\perp}^2 + \tau (\bar{x} + \xi) Q^2 / (2\xi)]$ in collinear appr: regularizes also TT amplitude

IR singular for large Q^2

$$\Gamma T: \int_0^1 d\tau \frac{\Phi_V(\tau)}{\tau^2}$$

PK 3

The $\gamma^* p \rightarrow Pp$ amplitudes

$$\mathcal{M}_{0+,0+}(P) = \frac{e_0}{2} \sum_{ab} \mathcal{C}_P^{ab} \langle \widetilde{H}_{\text{eff}}^{ab} \rangle_P + \text{(pole)}$$

$$\mathcal{M}_{0-,0+}(P) = \frac{e_0}{2} \frac{\sqrt{-t'}}{M+m} \sum_{ab} \mathcal{C}_P^{ab} \xi \langle \widetilde{E}_{n.p.}^{ab} \rangle_P + (\text{pole})$$

$$\widetilde{H}_{\text{eff}} = \widetilde{H} - \xi^2 / (1 - \xi^2) \widetilde{E}$$

$$\gamma^* n \qquad \pi^+$$

$$p \qquad n$$

$$\sim \frac{g_{PNN}F_P(Q^2)F_{PNN}(t)}{t-m_P^2}$$

$$\begin{split} \pi^+ &: \qquad \widetilde{F}_{p \to n} = \widetilde{F}^u - \widetilde{F}^d & \text{pion exchange} \\ \pi^0 &: \qquad e_u \widetilde{F}^u - e_d \widetilde{F}^d \\ K^+ \Lambda &: \qquad \widetilde{F}_{p \to \Lambda} = -\frac{1}{\sqrt{6}} (2\widetilde{F}^u - \widetilde{F}^d - \widetilde{F}^s) & \text{Kaon exchange} \\ K^+ \Sigma^0 &: \qquad \widetilde{F}_{p \to \Sigma^0} = -\frac{1}{\sqrt{2}} (\widetilde{F}^d - \widetilde{F}^s) & \text{Kaon exchange} \\ K^0 \Sigma^+ &: \qquad \widetilde{F}_{p \to \Sigma^+} = -(\widetilde{F}^d - \widetilde{F}^s) \\ \eta, \eta' &: \qquad \widetilde{F}^1 \sim e_u \widetilde{F}^u + e_d \widetilde{F}^d + e_s \widetilde{F}^s & \widetilde{F}^8 \sim e_u \widetilde{F}^u + e_d \widetilde{F}^d - 2e_s \widetilde{F}^s \\ gg \text{ Fock state negligible since } \mathcal{H}^{Pg} \sim -t'/Q^2 & \text{K.-Passek(02)} \\ \text{flavor symmetry among ground state baryons - can be probed} \\ (\text{flavor symmetric sea assumed}) \end{aligned}$$

What do we know about GPDs?

GPD	probed by	constraints	status
Н	$ ho^0,\phi$ cross sections	PDFs	known
\widetilde{H}	$A_{LL}(\rho^0)$	polarized PDFs	probably small
E	$A_{UT}(ho^0,\phi)$	sum rule for 2^{nd} moments	probably small
others	-	-	unknown
H	$ ho^0,\phi$ cross sections	PDFs, Dirac ff	known
\widetilde{H}	π^+ data	pol. PDFs, axial ff	known
E	$A_{UT}(ho^0,\phi)$	Pauli ff	known
$\widetilde{E}^{n.p.}$	π^+ data	-	uncertain
H_T	π^+ data	transversity PDFs [1]	known
others	-	_	unknown

Status of small-skewness GPDs as extracted from meson electroproduction data. The upper part is for gluons and sea quarks, the lower part for valence quarks. Except of H for gluons and sea quarks all GPDs are probed for scales of about 4 GeV^2 ([1] Anselmino (09))

The ϕ cross section

JLAB12: measure ϕ cross section at $W = 3, 4 \,\mathrm{GeV}$

The ϕ/ρ^0 ratio

$$\sigma_L(\phi)/\sigma_L(
ho^0)$$

HERA:	$W\simeq 80{ m GeV}$
HERMES:	$W = 5 \mathrm{GeV}$

CLAS:
$$W \simeq 2.2 \,\text{GeV}$$
 $Q^2 = 3.4 \,\text{GeV}^2$
 $\sigma(\phi)/\sigma(\rho) \simeq 0.011 \pm 0.004$

suppression due to different a_V SU(3) breaking in sea $\kappa_s = \frac{(u(x)+d(x))/2}{s(x)}$ CTEQ6 $\kappa_s \simeq 2$ at low Q^2 and $\rightarrow 1$ for $Q^2 \rightarrow \infty$ and valence quarks for HERMES, CLAS COMPASS data on ρ^0 and ϕ may verify dominance of gluons (+ sea) JLAB12: checks sea

What do we know about E?

analysis of Pauli FF for proton and neutron at $\xi = 0$ Diehl et al (04):

$$\begin{split} F_2^{p(n)} &= e_{u(d)} \int_0^1 dx E_v^u(x,\xi=0,t) + e_{d(u)} \int_0^1 dx E_v^d(x,\xi=0,t) \\ \text{ansatz for small} -t: \ E_v^a &= e_v^a(x) \exp\left\{t\left(\alpha_v' \ln(1/x) + b_a^e\right)\right\} \\ \text{forward limit:} \ e_v^a &= N_a x^{-0.48} (1-x)^{\beta_v^a} \text{ (analogously to PDFs)} \\ N_a \text{ fixed from } \kappa_a &= \int_0^1 dx E_v^a(x,\xi=0,t=0) \qquad (\kappa^a \text{ anom. magn. moment}) \\ \text{fitting FF data:} \ \beta_v^u &= 4, \ \beta_v^d = 5.6 \end{split}$$

sum rule (Ji's s.r. and momentum s.r. of DIS) at $t = \xi = 0$ $\int_0^1 dx x e_g(x) = e_{20}^g = -\sum e_{20}^{a_v} - 2\sum e_{20}^{\bar{a}}$ valence term very small \Rightarrow gluon and sea quark moments cancel each other parameterization as above, N_s fixed from positivity bound, N_g from sum rule

input to double distribution ansatz

Cross sections and A_{UT} for vector mesons

 ho^{0} , ω , ho^{+} , K^{*0} at $W=5\,{
m GeV}$

Goloskokov-K(08)

t dependence of $A_{UT} \sim \text{Im}[\langle E \rangle^* \langle H \rangle]$ controlled by trivial factor $\sqrt{-t'}$ except for ρ^+ : since $H_v^u - H_v^d$ small and $E_v^u - E_v^d$ large E non-negligible in cross section, contribution from helicity flip ampl. $\propto t'$ data on $\rho^0, \omega, \phi, K^{*0}$ from HERMES and COMPASS will come JLAB12? for K^{*0} : transition GPD $F_{p \to \Sigma^+}^{ds} = F^s - F^d$

π^+ : Transverse photon polarization matters

Twist-3

 $\mathcal{M}_{0-,++} \propto \text{const}$ twist-3 pion w.f. helicity-flip GPDs $(H_T, E_T, \widetilde{H}_T, \widetilde{E}_T)$ required Hoodbhoy-Ji (98), Diehl (01)

at small ξ and small -t': H_T dominant

$$\mathcal{M}_{0-,\mu+}^{\text{twist}-3} = e_0 \sqrt{1-\xi^2} \int_{-\xi}^{1} d\bar{x} \,\mathcal{H}_{0-,\mu+}^{\text{twist}-3} \left[H_T^u - H_T^d \right]$$

 $\mathcal{H}_{0-,\mu+}: \text{ with pseudoscalar w.f.} \\ \langle \pi^+(q') \mid \bar{d}(x)\gamma_5 u(-x) \mid 0 \rangle = f_\pi \mu_\pi \int d\tau e^{q'^+ x\tau} \Phi_P(\tau)$

local limit $x \to 0$ related to divergency of axial vector current $\implies \mu_{\pi} = m_{\pi}^2/(m_u + m_d) \simeq 2 \,\text{GeV}$ at scale $2 \,\text{GeV}$ $\mathcal{M}^{\text{twist-3}}_{0-,\mu+}$ formally suppressed by μ_{π}/Q but large at $Q^2 = 2 - 5 \,\text{GeV}^2$

Results and generalizations

detailed analysis of HERMES data on π^+ production (cross sections and transverse as well as longitudinal target asymmetries) see $\sin(\phi_s)$ moment Goloskokov-K(09), Bechler-Müller(09) (π^0 : Goldstein-Liuti(08))

straightforward extension to JLAB6 kinematics (large ξ) fails in detail COMPASS? (also time-like process $\pi^- p \rightarrow l^+ l^- n$) π^0 data from HERMES, COMPASS and JLAB12?

Generalization to K production straightforward (but not done) Kaon exchange and twist-3 effect similar (latter perhaps smaller $\mu_K = m_K^2/(m_u + m_s) \simeq 1.5 \,\text{GeV}$)

K data from JLAB12 would probe \widetilde{H} and \widetilde{E} for strange quarks

Summary

- electroproduction of strangeness will provide information about strange quarks GPDs, not much known as yet
- GPDs are process independent fcts, may be used to predict other processes
 - Fourier transform $\Delta_{\perp} \Longrightarrow b$ ($\Delta_{\perp}^2 = -t$) gives access to localization of partons in transverse configuration space
 - total angular momentum of strange quarks through Ji's sum rule
- Jlab 12 may allow measurements at sufficiently small $\boldsymbol{\xi}$
 - for $\xi \gtrsim 0.2$ one may likely run into problems with normalization
 - \implies study ratios of oberservables (Strikman-Weiss(08))
 - warning: at low Q^2 large NLO correction (Diehl-Kugler(07))