Light hadron production studies in pp collisions at $\sqrt{s} = 0.9$ and 7 TeV with the LHCb detector

Amhis Yasmine

EPFL

- Introduction to LHCb
- K_s production cross-section.
- Strange V⁰s production ratios
- Proton ratio production.

Who are we?

So we built:

Down in the pit where the action happens

Down in the pit where the action happens

The LHCb detector at LHC, JINST 3 (2008) S08005

Yasmine Amhis - EPFL

Tracking @LHCb

Velo Open

- Two halves with 21 stations.

– Each station has 2 micro-strip silicon sensors providing R and ϕ measurement

- Separated from beam vacuum by 300 μ m Al foil (serves also as RF shield)

Tracking @LHCb

Velo Open

Tracker Turicensis (TT) Silicon strip detector R Three tracking stations downstream of magnet - Inner part: Silicon strip detectors

- Outer part: Straw tubes

Tracking @LHCb

-Coverage: 1-100 GeV

sealed to Vertex

Acceptance: 300 mrad hor

25-250 mrad vert

- Resolusion for gas radiators close to MC after alignment of mirrors and photon detectors

Photon Funnel + Shielding Acceptance: 15-120 mrad hor

15-100 mrad vert

- Aerogel being improved

PID(a),LHCb

-Coverage: 1-100 GeV

- Resolusion for gas radiators close to MC after alignment of mirrors and photon detectors

- Aerogel being improved

	23-Nov-2009 18:03:46	Fill #: 883	Energy: 0.450 TeV	I(B1): 4.72e+09	I(B2): 4.72e+09
About a year after		ATLAS	ALICE	CMS	LHCb
	Experiment Status	STANDB	Y STANDBY	STANDBY	COLLIDING!
	Instantaneous Luminosity	3.154e+	00 0.000e+00	-1.068e-03	<u>5.725e+91</u>
	Integrated Luminosity	3.154e+	00 0.000e+00	0.000e+00	0.000e+00
	BKGD 1	0.000	0.001	0.001	0.051
	BKGD 2	25002.0	00 0.000	0.000	0.141
	BKGD 3	0.000	0.012	0.000	0.050
	LHCf STANDBY Count(Hz	z): 0 LHC	b VELO Position	OUT TOTEM:	No info

Data Samples available today

But we'll focus on **Early Data** where we had an open trigger

450 + 450 GeV: 6.8 μb⁻¹ in the pilot run of 2009 and 0.31 nb⁻¹ in 2010

 $K_{s} \text{ production } (a)$ $\sqrt{s} = 0.9 \text{ TeV}$

Yasmine Amhis - EPFL

K_s production (*a*) $\sqrt{s} = 0.9 \text{ TeV}$ -Using 6.8 µb⁻¹ from pilot run

-K_s cross-section not measured before at this energy. -The P_T and y range were extended. before at this energy. -Main systematic from 2.5 < y < 4.0900 GeV UA1 pp 630 GeV -2.5 < η < 2.5 $p \overline{p}$ 630 GeV -1.0 < y < 1.0 p p 1800 GeV -1.0 < y < 1.0 Luminosity: 12 % UA5 pp 540 GeV -3.5 < y < 3.5 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 p_T [GeV/c] Tracking efficiency:10%

K_s production (a) $\sqrt{s} = 0.9$ TeV

Important input for hadronization models, measured in bins of y and P_T and compared to LHCb MC and Perugia 0.

Important input for hadronization models, measured in bins of y and pT and compared to LHCb MC and Perugia 0 (**arXiv:1005.3457**).

V⁰ measurements a couple of technicalities

High-purity, prompt K_s and Λ samples selected based on a combined impact parameters.

PV requirement ensures that only the V⁰s coming from non-diffractive events are kept (model based definition PYTHIA 6 & PYTHIA 8).

• Efficiency from LHCb-MC (PYTHIA & EvtGen) and GEANT simulation for prompt, non-diffractive events.

0. 31 nb⁻¹ @ 0.9 TeV and 0.2 nb⁻¹ @ 7 TeV as V⁰s abound in minimum bias data: 5 K_s and 1 Λ selected per 100 triggers in data @ 7 TeV.

Baryon suppression with Λ/K_s

<u>*Observation*</u>: The ratio $\overline{\Lambda/K_s}$ is higher than expected at both energies.

Might be consistent with indications on the ratio of to K_s production at Tevatron (http://home.fnal.gov/skands/leshouches-plots).

Yasmine Amhis - EPFL

Baryon number transport with $\overline{\Lambda}/\Lambda$

Baryon number conservation requires the destroyed beam particles in inelastic nondiffractive collisions must be balanced by creation of baryons else where.

Question: How close are the baryon and anti-baryon produced in the phase space?

Baryon number transport with Λ/Λ

Baryon number conservation requires the destroyed beam particles in inelastic nondiffractive collisions must be balanced by creation of baryons else where.

Question: How close are the baryon and anti-baryon produced in the phase space?

Baryon number transport with $\overline{\Lambda}/\Lambda$

0.9 TeV

<u>Observation</u>: Measurements lie significantly under MC predictions at 0.9 TeV; Reasonable agreement farther from the beam (in y), at 7 TeV, where the ratio must be very close to the unity.

Baryon number transport with Λ/Λ

0.9 TeV

Observation: Measurements lie significantly under MC predictions at 0.9 TeV; Reasonable agreement farther from the beam (in y), at 7 TeV, where the ratio must be very close to the unity.

Proton production

High purity (anti)proton samples of 90-95% obtained over full LHCb acceptance.

15 MEvts @ 0.9 TeV and 13 MEvts @ 7 TeV for the $\overline{p/p}$.

Baryon number transport \overline{p}/p

Observation:

Big deviation in ratio from unity at low energy. Much less so at 7 TeV. Reasonable agreement observed with Perugia 0.

Preliminary systematics in ratios

Most of the systematics cancel in the ratios. Remaining systematics relate mainly to MC, data comparisons.

Uncertainties	Errors		
p,π interaction cross-sections	~ 10%		
V ⁰ production & interaction cross-sections	~10%	Detia	Tatal
LHCb material description	<10%	Ratio	Iotal
LITOD Material description	<10%	$\bar{\Lambda}/\Lambda$	~2%
Λ transverse polarisation	<1%	Ā (120	0.100/
Selection cuts (dominated by PID)	1-14%	Λ/K_{S}°	2-12%
		\bar{p}/p	3-14%
Ghost tracks	<2%	1/1	
Acceptance asymmetries	~ 2%		
Non-prompt contamination	<1%		

Baryon number transport with Λ/Λ

Comparing rapidity bins equally away from the beam

Probes scaling violations.

 $y_1 = y_2 + \ln\left(\frac{E_{b1}}{E_{b2}}\right)$

<u>Observation:</u> Consistency between the two Energy measurements and previous result.

Roma non fu fatta in un giornoAnd neither was LHCb....but....

• LHCb produced unique minimum bias physics results exploiting the unique rapidity and transverse momentum acceptance of the experiment.

- Stay tuned for coming papers:
 → Mutliplicity studies.
 - $\rightarrow \Phi$ production.

→ scaling variable for forward physics

E Feynman's x_F

$$x_F = rac{2p_z}{\sqrt{s}}$$

variables factorizing the Lorentz-invariant phase space element

 \square transverse momentum, assuming the beam-direction along z

$$p_T=\sqrt{p_x^2+p_y^2}$$

rapidity: longitudinal variable for identified particles

$$y=rac{1}{2}\lnrac{E+p_z}{E-p_z}$$

pseudorapidity: if the particle type is not known

$$\eta = rac{1}{2} \ln rac{p+p_z}{p-p_z} = -\ln an rac{ heta}{2}$$

→ kinematic dip ("seagull") in particle density around $\eta = 0$

