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Motivation

The accurate determination of unpolarized parton distributions (PDFs) is
a crucial ingredient of the LHC program

In the recent years a new approach, the NNPDF approach, has been
developed that bypasses all the problems present in the standard approach
to PDF determination: bias due to restrictive input functional forms,
gaussian/linear approximations, lack of rigorous statistical interpretation of
uncertainties ...

While in this talk we will present results (mostly) about unpolarized
NNPDFs, the methodology generalizes straightforwardly to other cases:
fragmentation functions, TMDs, nuclear PDFs,...

For example, see the NNPDF-inspired determination of Generalized Parton
Distributions in K. Kumericki and D. Mueller, arXiv:1008.2762
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The NNPDF approach to PDF determination

Monte Carlo errors

Non-gaussian errors and non triv-
ial error propagation.

Neural Networks

Avoid bias from a restrictive fixed
functional form.

Dynamical Stopping

No looking for absolute minimum
but learning from data.

Bayesian reweighting

Include new experimental infor-
mation without refitting

N. B.: The general strategy holds also for

polarized PDFs, fragmentation functions,

nuclear PDFs, ...
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Step 1: Monte Carlo Errors

Monte Carlo errors

Non-gaussian errors and non triv-
ial error propagation.
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Monte Carlo sample

Generate a Nrep Monte Carlo sets of artificial data, or ”pseudo-data” of the
original Ndata data points

F
(art)(k)
i (xp, Q

2
p) ≡ F

(art)(k)
i,p i = 1, ..., Ndata

k = 1, ..., Nrep

Multi-gaussian distribution centered on each data point:

F
(art)(k)
i,p = S

(k)
p,N F

exp

i,p

0

@1 + r
(k)
p σstat

p +

Nsys
X

j=1

r
(k)
p,j σ

sys

p,j

1

A

If two points have correlated systematic uncertainties

r
(k)
p,j = r

(k)

p′,j

Correlations are properly taken into account.
No need of linear, gaussian assumptions (unlike Hessian approach), exact error
propagation
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Monte Carlo Errors

For each replica (k) of the experimen-
tal data we fit a set of independent
PDFs

Ensemble of fitted replicas of PDFs: repre-
sentation of the probability distribution in the
space of PDFs

Uncertainties, central values, correlations ... of PDFs and functions of them
evaluated using textbook statistical methods.
Rigorous statistics, no need of arbitrary tolerances T ≡ ∆χ2 ≫ 1

〈F [f (x)]〉 =
1

Nrep

Nrep
X

k=1

F [f (k)(net)(x)]

σF [f (x)] =
q

〈F [f (x)]2〉 − 〈F [f (x)]〉2

ρ[fa(x1, Q
2
1 ), fb(x2, Q

2
2 )] =

〈fa(x1, Q
2
1 )fb(x2, Q

2
2 )〉 − 〈fa(x1, Q

2
1 )〉〈fb(x2, Q

2
2 )〉

σa(x1, Q2
1 )σb(x2, Q2

2 )
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Step 2: Neural Network as unbiased and redundant parametrization

Neural Networks

Avoid bias from a restrictive fixed
functional form.

Recall: in the standard approach,

restrictive input shape for PDFs

based on theoretical prejudices
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What are neural networks?

Each independent PDF at the initial scale parameterized by an individual NN.

* Each neuron receives input from neurons in
preceding layer.

* Activation determined by weights and
thresholds according to a non linear function:

ξi = g(
X

j

ωijξj − θi ), g(x) =
1

1 + e−x

In a simple case (1-2-1) we have,

ξ
(3)
1 =

1

1 + e
θ

(3)
1 −

ω
(2)
11

1+e
θ

(2)
1

−ξ
(1)
1

ω
(1)
11

−
ω

(2)
12

1+e
θ

(2)
2

−ξ
(1)
1

ω
(1)
21

7 parameters

...Just a convenient functional form
which provides a redundant and flex-
ible parametrization

We want the best fit to be indepen-
dent of any assumption made on the
parametrization.
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Simple functional froms vs. NeuralNets

Fit vs H1PDF2000, Q2 = 4. GeV2
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PDFs parametrized with simple functional forms → May result in systematic
underestimation of PDF uncertainties

The use of an universal interpolant like Artificial Neural Networks avoids any theoretical bias
from choice of input PDF functional form

Compare O(300) parms in NNPDF with O(10-25) parms in CTEQ,MSTW, DSSV, ...
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Step 3: Training and dynamical stopping

Dynamical Stopping

No looking for absolute minimum
but learning from data.
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Neural network learning

We need to train to avoid under-learning ...
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Neural network learning

... until we arrive to proper learning ....
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Neural network learning

... but be careful to avoid overlearning!

16 / 59



The NNPDF approach
NNPDF results

NNPDF@JLAB12
Conclusions

Extra material

Step 4: PDF reweighting: Include new data without refitting

Bayesian reweighting

Include new experimental infor-
mation without refitting
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Bayesian reweighting

Given the probability distribution of the PDFs represented by Nrep

instances, {PDFi}, i = 1, Nrep

Given a set of new experimental data (or simulated pseudo-data)
y = {y1, y2, · · · , yn}

Given a general functional of the PDFs, O [{PDF}]

The impact of the new data y on the PDFs can be determined using Bayesian
inference without refitting : PDF reweighting

〈O〉
old

=

Nrep
X

k=1

1

Nrep

O[fk ] → 〈O〉
new

=

N
X

k=1

wk O[fk ]

wk ≡ Nχ(χ2(y , fk))
n/2−1

e
− 1

2
χ2(y,fk ),

χ2(y , fk) → χ2 of new data for the prediction of PDFk

No need of any refitting! Applications to the JLAB12 program later ...

18 / 59



The NNPDF approach
NNPDF results

NNPDF@JLAB12
Conclusions

Extra material

Bayesian reweighting

Given the probability distribution of the PDFs represented by Nrep

instances, {PDFi}, i = 1, Nrep

Given a set of new experimental data (or simulated pseudo-data)
y = {y1, y2, · · · , yn}

Given a general functional of the PDFs, O [{PDF}]

The impact of the new data y on the PDFs can be determined using Bayesian
inference without refitting : PDF reweighting

〈O〉
old

=

Nrep
X

k=1

1

Nrep

O[fk ] → 〈O〉
new

=

N
X

k=1

wk O[fk ]

wk ≡ Nχ(χ2(y , fk))
n/2−1

e
− 1

2
χ2(y,fk ),

χ2(y , fk) → χ2 of new data for the prediction of PDFk

No need of any refitting! Applications to the JLAB12 program later ...

19 / 59



The NNPDF approach
NNPDF results

NNPDF@JLAB12
Conclusions

Extra material

Bayesian reweighting

Given the probability distribution of the PDFs represented by Nrep

instances, {PDFi}, i = 1, Nrep

Given a set of new experimental data (or simulated pseudo-data)
y = {y1, y2, · · · , yn}

Given a general functional of the PDFs, O [{PDF}]

The impact of the new data y on the PDFs can be determined using Bayesian
inference without refitting : PDF reweighting

〈O〉
old

=

Nrep
X

k=1

1

Nrep

O[fk ] → 〈O〉
new

=

N
X

k=1

wk O[fk ]

wk ≡ Nχ(χ2(y , fk))
n/2−1

e
− 1

2
χ2(y,fk ),

χ2(y , fk) → χ2 of new data for the prediction of PDFk

No need of any refitting! Applications to the JLAB12 program later ...

20 / 59



The NNPDF approach
NNPDF results

NNPDF@JLAB12
Conclusions

Extra material

Bayesian reweighting

Given the probability distribution of the PDFs represented by Nrep

instances, {PDFi}, i = 1, Nrep

Given a set of new experimental data (or simulated pseudo-data)
y = {y1, y2, · · · , yn}

Given a general functional of the PDFs, O [{PDF}]

The impact of the new data y on the PDFs can be determined using Bayesian
inference without refitting : PDF reweighting

〈O〉
old

=

Nrep
X

k=1

1

Nrep

O[fk ] → 〈O〉
new

=

N
X

k=1

wk O[fk ]

wk ≡ Nχ(χ2(y , fk))
n/2−1

e
− 1

2
χ2(y,fk ),

χ2(y , fk) → χ2 of new data for the prediction of PDFk

No need of any refitting! Applications to the JLAB12 program later ...

21 / 59



The NNPDF approach
NNPDF results

NNPDF@JLAB12
Conclusions

Extra material

Bayesian reweighting

Given the probability distribution of the PDFs represented by Nrep

instances, {PDFi}, i = 1, Nrep

Given a set of new experimental data (or simulated pseudo-data)
y = {y1, y2, · · · , yn}

Given a general functional of the PDFs, O [{PDF}]

The impact of the new data y on the PDFs can be determined using Bayesian
inference without refitting : PDF reweighting

〈O〉
old

=

Nrep
X

k=1

1

Nrep

O[fk ] → 〈O〉
new

=

N
X

k=1

wk O[fk ]

wk ≡ Nχ(χ2(y , fk))
n/2−1

e
− 1

2
χ2(y,fk ),

χ2(y , fk) → χ2 of new data for the prediction of PDFk

No need of any refitting! Applications to the JLAB12 program later ...

22 / 59



The NNPDF approach
NNPDF results

NNPDF@JLAB12
Conclusions

Extra material

Outline

1 The NNPDF Approach: Ideas and Results

2 NNPDF results and strangeness studies

3 NNPDF and the JLAB12 program

4 Conclusions

5 Extra material

23 / 59



The NNPDF approach
NNPDF results

NNPDF@JLAB12
Conclusions

Extra material

Unpolarized NNPDF: Status of the Art

NNPDF2.1 includes all relevant datasets from DIS, Drell-Yan, vector-boson
production and inclusive jet production

Only red true NLO global fit: consistent use of NLO pQCD (FastKernel,
FastNLO), no K-factor approximations

NNPDF2.1 improves on any existing NLO PDF set
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Strange PDF s+(x , Q2)

The strange PDF is the less constrained of all light quark PDFs

Experimental constraints: neutrino charm production and partly Drell-Yan

Much larger uncertainties than u, d PDFs

Absolute PDF uncertainties from modern PDF sets:
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Strange PDF s+(x , Q2)

The strange PDF is the less constrained of all light quark PDFs

Experimental constraints: neutrino charm production and partly Drell-Yan

Much larger uncertainties than u, d PDFs

Absolute PDF uncertainties from modern PDF sets:
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Note functional form biases in CTEQ6.6/MSTW08: no experimental constraints
on xs+ for x ≤ 10−2
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Strange asymmetry PDF: s−(x , Q2) in NNPDF1.2 (DIS-only fit)

No theoretical constraints on s−(x, Q2
0 ) apart from valence sum rule

At least one crossing required by sum rule, but some replicas have two crossings

Compare with more restrictive parametrizations

xs
−

mstw = A−x
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(1 − x)
η− (1 − x/x0)
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Impact on NuTeV anomaly

Accurate determination of xs− → Important phenomenological implications:
NuTeV anomaly: Discrepancy (≥ 3σ) between indirect (global fit)and direct (NuTeV
neutrino scattering) determinations of sin2 θW

EW fit

sin2 θW = 0.2223 ± 0.0003

NuTeV (assumes [S−] = 0)

sin2 θW = 0.2277 ± 0.0017

 0.215

 0.22

 0.225

 0.23

 0.235

 0.24

 0.245

si
n2 θ W

Determinations of the weak mixing angle sin2θW

NuTeV01 NuTeV01 EW fit
+ NNPDF1.2 [S-]

NuTeV01
+ NNPDF2.0 [S-] NuTeV + NNPDF1.2

ˆ

S−
˜

sin2 θW = 0.2263 ±
0.0017exp ± 0.0107PDFs

NuTeV + NNPDF2.0
ˆ

S−
˜

sin2 θW = 0.22314 ±
0.00251
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Polarized NNPDF: Status of the Art

Unbiased NNPDF analysis crucial for pPDFs, with much less experimental
constraints than in unpolarized

Inclusive polarized structure func-
tion data g1(x , Q2) on proton, deuteron and neutron targets from spin asymmetries

g1(x, Q
2
) = A1(x, Q

2
)

F2(x, Q2)

2x(1 + R(x, Q2))

“

1 + γ
2
”

, γ
2
≡

4M2
Nx2

Q2
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NNPDFpol1.0 dataset

Theoretical constraints:
* Sum rules

h

∆T3(Q
2
0 )

i

≡

Z 1

0
dx ∆T3(x, Q

2
0 ) = a3 ,

h

∆T8(Q
2
0 )

i

≡

Z 1

0
dx ∆T8(x, Q

2
0 ) = a8 ,

* Positivity of polarized PDFs → Constraints on polarized
SFs: |g1(x, Q2)| ≤ F1(x, Q2) for all targets

F
p
1 , Fd

1 , Fn
1 computed consistently from NNPDF1.0

30 / 59



The NNPDF approach
NNPDF results

NNPDF@JLAB12
Conclusions

Extra material

Polarized NNPDFs (Preliminary)
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Polarized NNPDFs (Preliminary)
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The polarized gluon ∆g(x) is essentially unconstrained from inclusive
polarized DIS only

Polarized strangeness (in ∆T8) poorly constrained, info from a8 sum rule
in inclusive DIS fit, large uncertainties

More work required for quantitative phenomenology

32 / 59



The NNPDF approach
NNPDF results

NNPDF@JLAB12
Conclusions

Extra material

Outline

1 The NNPDF Approach: Ideas and Results

2 NNPDF results and strangeness studies

3 NNPDF and the JLAB12 program

4 Conclusions

5 Extra material

33 / 59



The NNPDF approach
NNPDF results

NNPDF@JLAB12
Conclusions

Extra material

NNPDF and the JLAB12 program

The JLAB12 upgrade offers a rich program on the polarized and
unpolarized proton structure at large-x

Relevant both for our understanding of QCD but also for their implications
to precision LHC physics

Bayesian reweighting specially suitable to study impact of projected data
onto PDFs without refitting

Unbiased PDFs are crucial to faithfully assess impact of new data in
extrapolation regions (non functional bias)

Here we will discuss only two applications: constraining the d/u ratio from
F n

2 /F
p
2 data and constraining strangeness using kaon-tagged SIDIS

N. B.: Not an expert in JLAB physics – excuse inaccuracies ...
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The d/u ratio at large-x

Large-x PDFs affected by large uncertainties from lack of experimental
constraints

The d/u ratio on top might suffer from deuterium nuclear uncertainties

Both problems solved by an accurate measurement of F n
2 at large-x

Relevant for non-perturbative QCD, but also for LHC physics

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8

d 
/ u

 (
 x

, Q
2  )

x

NNPDF2.0
BONUS  JLAB12 accuracy (2% syst)

39 / 59



The NNPDF approach
NNPDF results

NNPDF@JLAB12
Conclusions

Extra material

The d/u ratio at large-x

Assess impact of pseudo-data from BONUS12 F n
2 /F

p
2 measurements using

PDF reweighting (data from E. Bueltmann)
σsyst = 2% assumed, W ≥ 2 GeV, L = 2 · 1034cm−2s−1

BONUS F n
2 /F

p
2 → Huge reduction of PDF uncertainties in d/u ratio!

Implications for LHC physics to be explored
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Unpolarized strangeness via SIDIS

HERMES has published measurements of kaon production in SIDIS
(PLB 666(2008)446)

At LO, knowledge of fragmentation functions leads to strangeness
determination

As a playground for JLAB12, assume HERMES kinematics and
uncertainties for the SIDIS strangeness measurements
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Unpolarized strangeness via SIDIS

Include “xs” pseudo-data in NNPDF2.0 via reweighting

Crude approximations (missing NLO corrections, assumes DK
u , DK

s ),
analysis should be improved for realistic estimates

Potential for sizable reductions of unpolarized strangeness from fixed
target SIDIS data. Impact on LHC physics? Non-perturbative nucleon
models? Polarized strangeness?

Redo with JLAB12 realistic pseudo-data
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Conclusions

The NNPDF approach provides an unbiased, statistically rigorous
methodology to determine PDFs from global analysis

Unpolarized NNPDFs fully competitive, essential ingredient of LHC
physics (PDF4LHC recommendation)

Ongoing work on polarized NNPDFs. NNPDF fragmentation functions,
nuclear PDFs, Generealized PDFs, ... → medium-long term projects

Bayesian reweighting allows to determine impact of new data on PDFs
without refitting

JLAB12 program → Potential to substantially improve our knowledge of
unpolarized and polarized proton structure

44 / 59



The NNPDF approach
NNPDF results

NNPDF@JLAB12
Conclusions

Extra material

Conclusions

JLAB12 program → Potential to improve substantially our knowledge of
unpolarized and polarized proton structure
This potential can be quantified using PDF reweighting
(Both for unpolarized and polarized PDFs)
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Conclusions

JLAB12 program → Potential to improve substantially our knowledge of
unpolarized and polarized proton structure
This potential can be quantified using PDF reweighting
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Thanks for your attention!
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Confidence Levels

Easy to determine arbitrary confidence levels on PDFs and physical observables

CLs can be very different from gaussian 1–sigma errors
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Individual replicas vs Average quantities

x
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NNPDF2.0 - 68% CL

σNNPDF2.0 - 1-

Individual Replicas

Even though individual replicas may fluctuate significantly, average quantities
such as central values and error bands are smooth inasmuch as stability is reached
due to the number of replicas increasing.
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Monte Carlo vs. Hessian PDF uncertainties

Fit vs H1PDF2000, Q2 = 4. GeV2
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HERA-LHC 2009 PDF
benchmarks

H1PDF2000 fit done with
Hessian method and with
Monte Carlo method

The standard deviation of
the 100 PDF replicas - MC
method - in perfect
agreement with Hessian

errors with ∆χ2 = 1

The Monte Carlo method to
estimate PDF uncertainties
reproduces Hessian result
when global χ2 is quadratic
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Genetic Algorithm

Set neural network parameters randomly.

Make clones of the parameter vector and mutate them.

Evaluate the figure of merit for each clone:

Error function

E
2(k)[ω] =

Ndat
X

i,j

(F
(art)(k)
i − F

(net)(k)
i )

„

“

cov
(k)

”−1
«

ij

(F
(art)(k)
j − F

(net)(k)
j )

cov
(t0) defined from an experimental covariance matrix which to include normal-

ization errors with the t0 method (arXiv:0912.2276)

cov
(t0)
ij = σstat,2

i F
(exp)2
i +

Nsys
X

k

σsys,k
i σsys,k

j F
(exp)
i F

(exp)
j + σN

i σN
j F

(0)
i F

(0)
j ,

Select the best ones and iterate the procedure until a stability is reached.
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Dynamical Stopping Criterion

* Genetic Algorithms are monotonically decreasing by construction.

* The best fit is not given by the absolute minimum.

* The best fit is given by an optimal training beyond which the figure of
merit improves only because we are fitting statistical noise of the data.

Cross-validation method

* Divide data in two sets: training
and validation.

* Random division for each replica
(ft = fv = 0.5).

* Minimization is performed only on
the training set. The validation χ2

for the set is computed.

* When the training χ2 still decreases
while the validation χ2 stops
decreasing → STOP. # iterations
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Dynamical Stopping Criterion

* Genetic Algorithms are monotonically decreasing by construction.

* The best fit is not given by the absolute minimum.

* The best fit is given by an optimal training beyond which the figure of
merit improves only because we are fitting statistical noise of the data.

Cross-validation method

* Divide data in two sets: training
and validation.

* Random division for each replica
(ft = fv = 0.5).

* Minimization is performed only on
the training set. The validation χ2

for the set is computed.

* When the training χ2 still decreases
while the validation χ2 stops
decreasing → STOP. # iterations
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Direct |Vcs| determination

 52
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 0.8  0.85  0.9  0.95  1  1.05  1.1

χ2

|Vcs|

NNPDF1.2, Nrep = 500, |Vcd|=0.2256

NuTeV Dimuon
Parabolic fit (5 points)
Parabolic fit (3 points)

CKM global fit

Vcs = 0.97334±0.00023, ∆Vcs ∼ 0.02%

Direct determination-D and B decays

Vcs = 1.04 ± 0.06, ∆Vcs ∼ 6%

Direct det from ν−DIS (CCFR)

Vcs ≥ 0.74 (90%CL)

[PDG, Amsler et al, Phys. Lett. B67(2008) 1.]
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Direct |Vcs| determination

 52

 54

 56

 58

 60

 62

 0.8  0.85  0.9  0.95  1  1.05  1.1

χ2

|Vcs|

NNPDF1.2, Nrep = 500, |Vcd|=0.2256

NuTeV Dimuon
Parabolic fit (5 points)
Parabolic fit (3 points)

Direct det from ν−DIS (CCFR)

Vcs ≥ 0.74 (90%CL)

Direct determination-D and B decays

Vcs = 1.04 ± 0.06, ∆Vcs ∼ 6%

Direct det NNPDF1.2

Vcs = 0.96 ± 0.07, ∆Vcd ∼ 7%

[PDG, Amsler et al, Phys. Lett. B67(2008) 1.]

|Vcs| determination from neutrino DIS affected by s+(x) uncertainties

Unbiased parametrizations for PDFs allow to discriminate variations in s+(x)
from variations in CKM matrix elements
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NNPDF: Input datasets

NNPDF releases available based on reduced datasets

Global DIS DIS+DY DIS+JET

NNPDF Y Y Y Y

CT Y N N N

MSTW Y N N N

ABKM N N Y N

HERAPDF N Y N N

Only differ in data set, all other settings identical

Available in LHAPDF: NNPDF20 dis 100.LHgrid, NNPDF20 dis+dy 100.LHgrid, ...
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NNPDF2.0
FastKernel

NLO computation of hadronic observables
too slow for parton global fits.

MSTW08 and CTEQ include Drell-Yan
NLO as (local) K-factors rescaling the LO
cross section

0 0.5 1 1.5 2 2.5

y

0.00001

10ˉ⁴

10ˉ³

10ˉ²

0.1

E605

E886p

E886r

Wasy

Zrap

FastKernel METHOD

* NNPDF2.0 includes full NLO
calculation of hadronic observables.

* Use available fastNLO interface for jet
inclusive cross-sections.[hep-ph/0609285]

* Built up our own FastKernel
computation of DY observables.

Both PDFs evolution and double
convolution sped up

Use high-orders polynomial interpolation

Precompute all Green Functions

Z 1

x0,1

dx1

Z 1

x0,2

dx2 fa(x1)fb (x2)C
ab

(x1, x2) →

Nx
X

α,β=1

fa(x1,α)fb (x2,β )

Z 1

x0,1

dx1

Z 1

x0,2

dx2 I
(α,β)

(x1, x2)C
ab

(x1, x2)
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Input PDF basis

Polarized PDFs are parametrized at Q2
0 = 1 GeV2 in the basis:

Singlet ∆Σ(x) ≡
Pnf

i=1 (∆qi (x) + ∆q̄i (x)),

Triplet ∆T3(x) ≡ (∆u(x) + ∆ū(x)) −
`

∆d(x) + ∆d̄(x)
´

,

Octet
∆T8(x) ≡ (∆u(x) + ∆ū(x)) +

`

∆d(x) + ∆d̄(x)
´

− 2 (∆s(x) + ∆s̄(x)),

Gluon ∆g(x).

PDFs are parametrized with Artificial Neural Networks

∆Σ(x , Q2
0 ) = (1 − x)m∆Σx

−n∆ΣNN∆Σ(x) ,

∆T3(x , Q2
0 ) = A∆T3(1 − x)m∆T3 x

−n∆T3 NN∆T3(x) ,

∆T8(x , Q2
0 ) = A∆T8(1 − x)m∆T8 x

−n∆T8 NN∆T8(x) ,

∆g(x , Q2
0 ) = (1 − x)m∆g x

−n∆g NN∆g (x) .

Preprocessing makes learning more efficient
A∆T3 , A∆T8 determined from sum rules
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Fitting Strategy

NNPDF strategy is very different from the standard approach
(CTEQ/MSTW... polarized, DSSV/LSS/... polarized)
Instead of a set of basis functions with a small number of parameters →
unbiased basis of functions parameterized by a very large and redundant set of
parameters

Standard approach

O(10-20) parm (pol)
O(20-30) parm (unpol)

NNPDF

Not trivial because ...

A redundant parametrization might
adapt not only to physical behavior but
also to random statistical fluctuations of
data.

Ingredients of fitting procedure

1 Flexible and redundant
parametrization

2 Genetic Algorithm minimization

3 Dynamical stopping criterion
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