Kaon Azimuthal cosine modulations in SIDIS unpolarized cross section

<u>Francesca Giordano</u> Rebecca Lamb

PSHP2010, Frascati 18th-21st October 2010

$$F_{XY,Z} = F_{XY,Z}(x, y, z)$$
beam $\bigvee_{\text{polarization}}$
virtual photon
polarization
$$F_{XY,Z} = F_{XY,Z}(x, y, z)$$

Collinear case

$$\frac{d^5\sigma}{dxdydz} = \frac{\alpha^2}{xyQ^2} \left(1 + \frac{\gamma^2}{2x}\right) \left\{ A(y) F_{UU,T} + B(y) F_{UU,L} \right\}$$

Q^2 Negative squared

- 4-momentum transfer to the target
- **y** Fractional energy of the virtual photon
- X Bjorken scaling variable
- Z Fractional energy transfer to the

produced hadron

$$F_{XY,Z} = F_{XY,Z}(x, y, z, P_{h\perp})$$
beam $\bigvee_{\text{polarization}}$
virtual photon
polarization

 $d^5\sigma$ $= \frac{\alpha^2}{xuO^2} \left(1 + \frac{\gamma^2}{2x} \right) \left\{ A(y) F_{UU,T} + B(y) F_{UU,L} \right\}$ $dxdydzd\phi_h dP_{h\perp}^2$ $+C(y)\cos\phi_{h}F_{UU}^{\cos\phi_{h}}+B(y)\cos 2\phi_{h}F_{UU}^{\cos 2\phi_{h}}\}$

- Q^2 Negative squared
 - 4-momentum transfer to the target
- V Fractional energy of the virtual photon
- X Bjorken scaling variable
- Z Fractional energy transfer to the

produced hadron

$$F_{XY,Z} = F_{XY,Z}(x, y, z, P_{h\perp})$$
beam $\bigvee_{\text{polarization}}$
virtual photon
polarization

$${d^5\sigma\over dxdydzd\phi_h dP_{h\perp}^2}$$

$$= \frac{\alpha^2}{xyQ^2} \left(1 + \frac{\gamma^2}{2x} \right) \left\{ A(y) F_{UU,T} + B(y) F_{UU,L} + C(y) \cos \phi_h F_{UU}^{\cos \phi_h} + B(y) \cos 2\phi_h F_{UU}^{\cos 2\phi_h} \right\}$$

- Q^2 Negative squared
 - 4-momentum transfer to the target
- y Fractional energy of the virtual photon
- X Bjorken scaling variable
- Z Fractional energy transfer to the produced hadron

$$\left\langle \cos n\phi_h \right\rangle = \frac{\int \cos n\phi_h \frac{d^5\sigma}{dxdydzd\phi_h dP_{h\perp}^2} d\phi_h}{\int \frac{d^5\sigma}{dxdydzd\phi_h dP_{h\perp}^2} d\phi_h}$$

Factorization Theorem

Factorization Theorem

Factorization Theorem

$$F_{UU}^{\cos 2\phi_h} \propto C[-rac{2(\hat{P}_{h\perp}\cdotec{\kappa}_T)(\hat{P}_{h\perp}\cdotec{p}_T)-ec{\kappa}_T\cdotec{p}_T}{MM_h}h_1^{\perp}H_1^{\perp}]$$

implicit sum over quark flavors

Leading Twist Terms

$$F_{UU}^{\cos 2\phi_h} \propto C[-rac{2(\hat{P}_{h\perp}\cdotec{\kappa}_T)(\hat{P}_{h\perp}\cdotec{p}_T)-ec{\kappa}_T\cdotec{p}_T}{MM_h}h_1^{\perp}H_1^{\perp}]$$

implicit sum over quark flavors

Leading Twist Terms

$$F_{UU}^{\cos 2\phi_h} \propto C[-rac{2(\hat{P}_{h\perp}\cdot\vec{\kappa}_T)(\hat{P}_{h\perp}\cdot\vec{p}_T)-\vec{\kappa}_T\cdot\vec{p}_T}{MM_h}h_1^{\perp}H_1^{\perp}]$$

implicit sum over quark flavors

$$F_{UU}^{\cos 2\phi_h} \propto C\left[-\frac{2(\hat{P}_{h\perp}\cdot\vec{\kappa}_T)(\hat{P}_{h\perp}\cdot\vec{p}_T)-\vec{\kappa}_T\cdot\vec{p}_T}{MM_h}h_1^{\perp}H_1^{\perp}\right]$$

$$F_{UU}^{\cos\phi_h} \propto \frac{2M}{Q} C\left[-\frac{\hat{P}_{h\perp} \cdot \vec{p}_T}{M_h} x h_1^{\perp} H_1^{\perp} - \frac{\hat{P}_{h\perp} \cdot \vec{\kappa}_T}{M} x f_1 D_1 + \ldots\right]$$

implicit sum over quark flavors

$$F_{UU}^{\cos 2\phi_h} \propto C\left[-\frac{2(\hat{P}_{h\perp}\cdot\vec{\kappa}_T)(\hat{P}_{h\perp}\cdot\vec{p}_T)-\vec{\kappa}_T\cdot\vec{p}_T}{MM_h}h_1^{\perp}H_1^{\perp}\right]$$

$$F_{UU}^{\cos\phi_h} \propto \frac{2M}{Q} C\left[-\frac{\hat{P}_{h\perp} \cdot \vec{p}_T}{M_h} x h_1^{\perp} H_1^{\perp} - \frac{\hat{P}_{h\perp} \cdot \vec{\kappa}_T}{M} x f_1 D_1 + \ldots\right]$$

implicit sum over quark flavors

$$F_{UU}^{\cos 2\phi_h} \propto C[-rac{2(\hat{P}_{h\perp}\cdot\vec{\kappa}_T)(\hat{P}_{h\perp}\cdot\vec{p}_T)-\vec{\kappa}_T\cdot\vec{p}_T}{MM_h}h_1^{\perp}H_1^{\perp}]$$

$$F_{UU}^{\cos\phi_h} \propto \frac{2M}{Q} C[-\frac{\hat{P}_{h\perp} \cdot \vec{p}_T}{M_h} x h_1^{\perp} H_1^{\perp} - \frac{\hat{P}_{h\perp} \cdot \vec{\kappa}_T}{M} x f_1 D_1 +]$$

implicit sum over quark flavors interaction dependent terms neglected

$$F_{UU}^{\cos 2\phi_h} \propto C[-\frac{2(\hat{P}_{h\perp}\cdot\vec{\kappa}_T)(\hat{P}_{h\perp}\cdot\vec{p}_T)-\vec{\kappa}_T\cdot\vec{p}_T}{MM_h}h_1^{\perp}H_1^{\perp}] + \frac{M^2}{Q^2}C[\frac{\kappa_T^2}{M^2}f_1D_1 + ...]$$

COMPASS@CERN

$$w = (x, y, z, P_{h\perp})$$

$$n = \int L\sigma_w^0 [1 + 2\langle \cos \phi_h \rangle_w + 2\langle \cos 2\phi_h \rangle_w] \epsilon_{w,\phi_h}^{acc} \epsilon_{w,\phi_h}^{rad} dw$$

$$w = (x, y, z, P_{h\perp})$$
$$n = \int L\sigma_w^0 [1 + 2\langle \cos \phi_h \rangle_w + 2\langle \cos 2\phi_h \rangle_w] \epsilon_{w,\phi_h}^{acc} \epsilon_{w,\phi_h}^{rad} dw$$

$$w = (x, y, z, P_{h\perp})$$

$$n = \int L\sigma_w^0 [1 + 2\langle \cos \phi_h \rangle_w + 2\langle \cos 2\phi_h \rangle_w] \epsilon_{w,\phi_h}^{acc} \epsilon_{w,\phi_h}^{rad} dw$$

$$w = (x, y, z, P_{h\perp})$$

$$n = \int L\sigma_w^0 [1 + 2\langle \cos \phi_h \rangle_w + 2\langle \cos 2\phi_h \rangle_w] \epsilon_{w,\phi_h}^{acc} \epsilon_{w,\phi_h}^{rad} dw$$

$$w = (x, y, z, P_{h\perp})$$

$$n = \int L\sigma_w^0 [1 + 2\langle \cos \phi_h \rangle_w + 2\langle \cos 2\phi_h \rangle_w] \epsilon_{w,\phi_h}^{acc} \epsilon_{w,\phi_h}^{rad} dw$$

$$n_{MC} = \int L\sigma_{w}^{0} \epsilon_{w,\phi_{h}}^{acc} \epsilon_{w,\phi_{h}}^{rad} dw$$

COMPASS Extraction

 $C_{k}(\phi, x) = a_{0}^{k}(x) \cdot (1 + a_{1}^{k}(x) \cos \phi + a_{2}^{k}(x) \cos 2\phi + a_{3}^{k}(x) \sin \phi + ...)$ COMPASS Extraction

measured azimuthal distribution

$p_0 \cdot (1 + p_1 \cdot \cos \phi_h + p_2 \cdot \cos 2\phi_h + p_3 \cdot \sin \phi_h)$

COMPASS Extraction

measured azimuthal distribution

azimuthal acceptance

 $p_0 \cdot (1 + p_1 \cdot \cos \phi_h + p_2 \cdot \cos 2\phi_h + p_3 \cdot \sin \phi_h)$

COMPASS Extraction

COMPASS Extraction

measured azimuthal distribution

COMPASS Extraction

measured azimuthal distribution

$$w = (x, y, z, P_{h\perp})$$
$$n = \int L\sigma_w^0 [1 + 2\langle \cos \phi_h \rangle_w + 2\langle \cos 2\phi_h \rangle_w] \epsilon_{w,\phi_h}^{acc} \epsilon_{w,\phi_h}^{rad} dw$$

HERMES Extraction

$$w = (x, y, z, P_{h\perp})$$
$$n = \int L\sigma_w^0 [1 + 2\langle \cos \phi_h \rangle_w + 2\langle \cos 2\phi_h \rangle_w] \epsilon_{w,\phi_h}^{acc} \epsilon_{w,\phi_h}^{rad} dw$$

$$n_{born} = S^{-1}[n - B]$$

$$w = (x, y, z, P_{h\perp})$$
$$n = \int L\sigma_w^0 [1 + 2\langle \cos \phi_h \rangle_w + 2\langle \cos 2\phi_h \rangle_w] \epsilon_{w,\phi_h}^{acc} \epsilon_{w,\phi_h}^{rad} dw$$

$$n_{born} = S^{-1}[n - B]$$
describes the acceptance & smearing between adjacent bins

HERMES Extraction

$$w = (x, y, z, P_{h\perp})$$
$$n = \int L\sigma_w^0 [1 + 2\langle \cos \phi_h \rangle_w + 2\langle \cos 2\phi_h \rangle_w] \epsilon_{w,\phi_h}^{acc} \epsilon_{w,\phi_h}^{rad} dw$$

$$n_{born} = S^{-1}[n-B]$$

describes the acceptance & smearing between adjacent bins

events smeared in the sample from outside the acceptance

$$w = (x, y, z, P_{h\perp})$$
$$n = \int L\sigma_w^0 [1 + 2\langle \cos \phi_h \rangle_w + 2\langle \cos 2\phi_h \rangle_w] \epsilon_{w,\phi_h}^{acc} \epsilon_{w,\phi_h}^{rad} dw$$

$$n_{born} = S^{-1}[n-B]$$

describes the acceptance &
smearing between adjacent
bins

events smeared in the sample from outside the acceptance

$\begin{array}{l} \text{Multi-dimensional} \left(w \right) \\ \text{unfolding} \end{array}$

Binning 900 kinematic bins x 12 ϕ_h -bins									
Variable	Bin limits							#	
x	0.023	0.04	0.078	0.145	0.27	0.6		5	
у	0.2	0.3	0.45	0.6	0.7	0.85		5	
Z	0.2	0.3	0.4	0.5	0.6	0.75	1	6	
$P_{h\perp}$	0.05	0.2	0.35	0.5	0.7	1	1.3	6	

HERMES Extraction

$$w = (x, y, z, P_{h\perp})$$
$$n = \int L\sigma_w^0 [1 + 2\langle \cos \phi_h \rangle_w + 2\langle \cos 2\phi_h \rangle_w] \epsilon_{w,\phi_h}^{acc} \epsilon_{w,\phi_h}^{rad} dw$$

unfolding

$$A(1 + B\cos\phi_h + C\cos 2\phi_h)$$

$$n_{born} = S^{-1}[n-B]$$

describes the acceptance & smearing between adjacent bins

events smeared in the sample from outside the acceptance

HERMES Extraction

$$w = (x, y, z, P_{h\perp})$$

$$n = \int L\sigma_w^0 [1 + 2\langle \cos \phi_h \rangle_w + 2\langle \cos 2\phi_h \rangle_w] \epsilon_{w,\phi_h}^{acc} \epsilon_{w,\phi_h}^{rad} dw$$

$\begin{array}{c} \text{Multi-dimensional} \left(w \right) \\ \text{unfolding} \end{array}$

Binning 900 kinematic bins x 12 ϕ_h -bins									
Variable	Bin limits							#	
x	0.023	0.04	0.078	0.145	0.27	0.6		5	
У	0.2	0.3	0.45	0.6	0.7	0.85		5	
Z	0.2	0.3	0.4	0.5	0.6	0.75	1	6	
$P_{h\perp}$	0.05	0.2	0.35	0.5	0.7	1	1.3	6	

Projection Versus The Single Variable

$$w = (x, y, z, P_{h\perp})$$

$$n = \int L\sigma_w^0 [1 + 2\langle \cos \phi_h \rangle_w + 2\langle \cos 2\phi_h \rangle_w] \epsilon_{w,\phi_h}^{acc} \epsilon_{w,\phi_h}^{rad} dw$$

$\begin{array}{l} \text{Multi-dimensional} \left(w \right) \\ \text{unfolding} \end{array}$

Binning 900 kinematic bins x 12 ϕ_h -bins									
Variable	Bin limits							#	
x	0.023	0.04	0.078	0.145	0.27	0.6		5	
У	0.2	0.3	0.45	0.6	0.7	0.85		5	
Z	0.2	0.3	0.4	0.5	0.6	0.75	1	6	
$P_{h\perp}$	0.05	0.2	0.35	0.5	0.7	1	1.3	6	

Projection Versus The Single Variable

G. Sbrizzai, Spin2010 conference

G. Sbrizzai, Spin2010 conference

$$\propto C[-h_1^{\perp}H_1^{\perp} + \frac{\kappa_T^2}{Q^2}f_1D_1 +]$$

G. Sbrizzai, Spin2010 conference

G. Sbrizzai, Spin2010 conference

hadrons

Gamberg, Goldstein Phys. Rev. D77:094016, 2008

Zhang et al Phys. Rev. D78:034035, 2008

Barone et al Phys. Rev. D78:045022, 2008

Barone, Melis, Prokudin Phys. Rev. D81:114026, 2010

Ŧ

Į

 $P_{h\perp}$ [GeV]

G. Sbrizzai, Spin2010 conference

hadrons

Cahn expected flavor blind

Gamberg, Goldstein Phys. Rev. D77:094016, 2008

Zhang et al Phys. Rev. D78:034035, 2008

Barone et al Phys. Rev. D78:045022, 2008

Barone, Melis, Prokudin Phys. Rev. D81:114026, 2010

G. Sbrizzai, Spin2010 conference

-0.1

-0.1

HERMES Results: Hydrogen vs. Deuterium

HERMES Results: Hydrogen vs. Deuterium

HERMES Results: Hydrogen vs. Deuterium

 π

u-dominance

u-dominance

 $K^-\{s\bar{u}\} \qquad K^+\{u\bar{s}\}$

u - dominance ? $K^{-} \{ s\bar{u} \} \qquad K^{+} \{ u\bar{s} \}$ $H_{1}^{\perp, u \to K^{-}} \stackrel{?}{\approx} H_{1}^{\perp, u \to K^{+}}$

u - dominance ? $K^{-}\{s\bar{u}\} \qquad K^{+}\{u\bar{s}\} \qquad K^{-}\{s\bar{u}\} \implies full \ sea \ object$ $H_{1}^{\perp,u \to K^{-}} \stackrel{?}{\approx} H_{1}^{\perp,u \to K^{+}}$

HERMES Results: Kaons, Deuterium

HERMES Results: Kaons, Deuterium

First flavor dependent measurement of cosine amplitudes in DIS reactions !

First flavor dependent measurements: separate results for h^+/h^-

2010

First measurements for identified $\pi^+/\pi^- \& K^+/K^-$

First flavor dependent measurement of cosine amplitudes in DIS reactions !

 $\odot \cos 2\phi_h$: difference between π^+/π^- (1) $h^+/h^$ evidence of a non-zero Boer-Mulders function similar results for deuterium & hydrogen data suggest a Boer-Mulders function with same sign for *u* and *d* quark large signal and same sign for $K^+\!/K^ \Longrightarrow$ (u-dominance?) same Collins for $K^+\!/K^-$ (no-u-dominance?) important sea contribution $\odot\cos\phi_h$: (difficult to interpret, several contributions) difference between π^+/π^- (here) $h^+/h^$ evidence of a non-zero Boer-Mulders function large signal and same sign for $K^+\!\!/\,K^ \Rightarrow$ (u-dominance?) same Collins for $K^+ K^-$ > (no-u-dominance?) important sea contribution ?

Summary

You think you understand something? Now add the strange!

You think you understand something? Now add the strange!

http://www.particlezoo.net/

G. Sbrizzai, Spin2010 conference

COMPASS

COMPASS Results

COMPASS Results

Pion difference

Barone, Melis, Prokudin Phys. Rev. D81:114026, 2010

* subsample HERMES data

*

$$< k_T^2 > = 0.28 \, GeV^2$$

Barone, Melis, Prokudin Phys. Rev. D81:114026, 2010

Barone, Melis, Prokudin Phys. Rev. D81:114026, 2010

subsample HERMES data *

*

Barone, Melis, Prokudin Phys. Rev. D81:114026, 2010

Barone, Melis, Prokudin Phys. Rev. D81:114026, 2010

Barone, Melis, Prokudin Phys. Rev. D81:114026, 2010

RICH efficiency& contamination
 Binning effect
 Unfolding method
 Time stability

Model dependence: different
MC generators & cross section
models

Dipole Magnet effect on different charges tested > no effect

Small radiative effects checked
 Detector inefficiencies
 Effect at spectrometer edges
 Compatibility between different
 experimental setups

Model dependence: different
MC generators & cross section
models

□ 2-D test of acceptance > no effect

Systematic Checks