Probing strangeness in hard processes: a (partial) theory summary

A. Bacchetta

- Strange unpolarized PDF
- Strange fragmentation functions
- Strange dihadron fragmentation functions
- Strange in-medium effects
- Strange helicity distribution
- Strange TMDs
- Strange GPDs
- Strange fracture functions

Strange unpolarized PDFs

The strange distribution is poorly constrained

F. Kunne's talk and Martin, Stirling, Thorne, Watt, EPJ C63 (09)

J. Rojo's talk and NNPDF Coll, NPB 838 (10)

J. Rojo's talk and NNPDF Coll, NPB 838 (10)

The shape of the strange distribution used in fits seems to be wrong

F. Kunne's talk and HERMES

More data can have a significant impact on constraining the strange distribution

J. Rojo's talk

The $s-\bar{s}$ distribution is poorly known

J. Rojo's talk

Strange fragmentation functions

Landscape of kaon hadro

К+	u s
K ⁻	u s
K ⁰	d s
Κ ⁰	d s

W. Brooks's talk

Landscape of kaon hadronization

Naively, K⁻ comes more from mid-string than K⁺:

.....<u>q--q</u>::<u>q--u</u>::<u>u--s</u>::<u>s--u</u> vs.<u>q--u</u>::<u>u--s</u>::<u>s--q</u>::<u>q--u</u>

• Only two of the above kaons can contain a struck valence quark

W. Brooks's talk

Q²=2.5 GeV² z=0.5

The strange can be probed mainly by K⁻ production

Large differences between different fits

E. Christova's talk and DSS, PRD75 (07)

I) all fav. FFs and all unfav. FFs are equal \Rightarrow 2 FFs (BKK)

$$egin{array}{rcl} D^{K^+}_u &=& D^{K^+}_{ar{s}} &\Leftarrow& fav. \ D^{K^+}_{ar{u}} &=& D^{K^+}_s = D^{K^+}_d = D^{K^+}_{ar{d}} &\Leftarrow& unfav. \end{array}$$

II) fav. FFs are not equal, all unfav. FFs equal \Rightarrow 3 FFs (DSS)

$$egin{array}{rcl} D_{u}^{K^{+}}, & D_{ar{s}}^{K^{+}} & \Leftarrow & m_{s} >> m_{u,d} \ D_{ar{u}}^{K^{+}} & = & D_{s}^{K^{+}} = D_{d}^{K^{+}} = D_{ar{d}}^{K^{+}} \end{array}$$

III) fav. FFs and unfav. FFs are **power** suppressed (Kre):

$$egin{array}{rcl} D_{u}^{K^{+}}, & D_{ar{s}}^{K^{+}} & \Leftarrow & m_{s} >> m_{u,d} \ D_{u}^{K^{+}} & = & (1-z) D_{ar{s}}^{K^{+}}, \end{array}$$

IV) fav. FFs are not equal and unfav. FFs are not equal

 \Rightarrow 5 FFs (AKK)

$$egin{array}{rcl} D_u^{K^+}, & D_{ar{s}}^{K^+} & \Leftarrow fav. \ D_{ar{u}}^{K^+}, & D_s^{K^+} \ D_d^{K^+} & = D_d^{K^+} \end{array}$$

Strange dihadron fragmentation functions

First problem: identify different channels

S. Gliske's and A. Courtoy's talks

First problem: identify different channels

S. Gliske's and A. Courtoy's talks

First problem: identify different channels

S. Gliske's and A. Courtoy's talks

$\pi^+\pi^-$	$u ar{d} d ar{u}$
K^+K^-	$u \overline{s} s \overline{u}$

$\pi^+\pi^-$	$u ar{d} d ar{u}$
K^+K^-	$u \overline{s} s \overline{u}$

For $\pi^+\pi^-$

A. Courtoy's talks

$$\sum_{a} e^{\frac{2}{a}H_{1a}^{\mathcal{R}}(z,M_{h}^{2})H_{1\bar{a}}^{\overline{d}}(\langle \bar{z} \rangle)} K^{\mathcal{R}}(\langle \bar{z} \rangle) \langle \bar{M}_{h}^{2} \rangle$$
$$K^{+}K^{-} u\bar{s}s\bar{u}$$

For
$$\pi^+\pi^ D_1^u(z, M_h) = D_1^{\bar{u}}(z, M_h) = D_1^d(z, M_h) = D_1^d(z, M_h)$$

 $D_1^s(z, M_h) = D_1^{\bar{s}}(z, M_h)$
 $D_1^c(z, M_h) = D_1^{\bar{c}}(z, M_h)$

 $D_1^s(z, M_h) = 0$

 $D_1^s(z, M_h) = D_1^u(z, M_h)$

$$H_{1}^{\triangleleft u}(z, M_{h}) = H_{1}^{\triangleleft \bar{d}}(z, M_{h}) = -H_{1}^{\triangleleft d}(z, M_{h}) = -H_{1}^{\triangleleft \bar{u}}(z, M_{h})$$

$$H_{1}^{\triangleleft s}(z, M_{h}) = H_{1}^{\triangleleft \bar{c}}(z, M_{h}) = H_{1}^{\triangleleft \bar{c}}(z, M_{h}) = 0$$

Thursday, 21 October 2010

$$\sum_{a} e^{\frac{1}{2}} H_{1a}^{\mathcal{A}(sp)}(\bar{z}, M_{h}^{2}) H_{1\bar{a}}^{\bar{d}}(\bar{z}) \left(\langle \bar{z} \rangle \right) \left(\langle \bar{M}_{h}^{2} \rangle \right) \sum_{a} e^{2}_{a} H_{1a}^{\triangleleft sp}(z, M_{h}^{2}) \bar{H}_{1\bar{a}}^{\triangleleft sp}(\langle \bar{z} \rangle + K^{+}K^{-} - u\bar{s}s\bar{u})$$

For
$$\pi^+\pi^ D_1^u(z, M_h) = D_1^{\bar{u}}(z, M_h) = D_1^d(z, M_h) = D_1^d(z, M_h) = D_1^u(z, M_h) = D_1^a(z, M_h)$$

 $D_1^s(z, M_h) = D_1^{\bar{s}}(z, M_h)$
 $D_1^s(z, M_h) = D_1^{\bar{s}}(z, M_h)$
 $D_1^c(z, M_h) = D_1^{\bar{c}}(z, M_h)$
 $D_1^c(z, M_h) = D_1^{\bar{c}}(z, M_h)$

$$\begin{aligned} H_{1}^{\triangleleft u}(z, M_{h}) &= H_{1}^{\triangleleft \bar{d}}(z, M_{h}) = -H_{1}^{\triangleleft d}(z, M_{h}) \stackrel{H_{1}^{\triangleleft u}(z, M_{h})}{=} H_{1}^{\triangleleft \bar{d}}(z, M_{h}) \stackrel{H_{1}^{\triangleleft \bar{d}}(z, M_{h})}{=} -H_{1}^{\triangleleft d}(z, M_{h}) \stackrel{H_{1}^{\triangleleft \bar{d}}(z, M_{h})}{=} H_{1}^{\triangleleft \bar{d}}(z, M_{h}) = -H_{1}^{\triangleleft \bar{d}}(z, M_{h}) = -H_{1}^{\triangleleft \bar{d}}(z, M_{h}) = -H_{1}^{\triangleleft \bar{d}}(z, M_{h}) = -H_{1}^{\triangleleft \bar{d}}(z, M_{h}) = 0 \\ H_{1}^{\triangleleft c}(z, M_{h}) = H_{1}^{\triangleleft \bar{c}}(z, M_{h}) = 0 \qquad \qquad H_{1}^{\triangleleft c}(z, M_{h}) = H_{1}^{\triangleleft \bar{c}}(z, M_{h}) = 0 \end{aligned}$$

Thursday, 21 October 2010

Strange helicity distribution

F. Kunne's talk

Isoscalar extraction of Δ s

F. Kunne's talk and HERMES

Δs puzzle

Inclusive data $(g_1^N \& a_8 \text{ from hyperon decay } +SU(3))$ $\rightarrow \int \Delta s = -0.08$ While semi inclusive data $\rightarrow \Delta s(x) \approx 0$

- Uncertainty on quark fragmentation functions (s-quark to K)
 - would need a factor of ~2 from DSS value of FF
- Global fits (DSSV, LSS) suggest negative Δs at low x
 - reconciles the two approaches
 - indeed COMPASS SIDIS : Δs =-0.01 with linear extrap.

 Δs =-0.05 with DSSV extrap.

• Assume SU(3) violation a_8 from 0.58 to 0.42 $\rightarrow \Delta s$ =-0.02 Bass & Thomas, PLB684(2010) 216

Strange in-medium modifications

W. Brooks's talk

DIS in Cold Nuclear Medium

000

029 1000

000

Partonic multiple scattering: medium-stimulated gluon emission, broadened p_T

prehadron forms *outside* the medium; or....

W. Brooks's talk

DIS in Cold Nuclear Medium

1000

Hadron forms *inside* the medium; then also have prehadron/hadron interaction

000 000

The curves presented in Figs. 6-9 are the main results of this paper. They demonstrate that including next-t leading twist corrections in the DIS off nuclei allow for a better understanding of the measured data. However it clear that one needs to go further to understand the behaviour displayed by the one and two particle distribution in the DIS off large nuclei such as Kr. For smaller nuclei such as N the next-to-leading twist contributions seem provide a satisfactory account of the experimental behaviour.

V. DISCUSSIONS AND CONCLUSIONS

The focus of this paper has been on the medium modification of dihadron fragmentation functions in the sen inclusive DIS off a large nucleus. We have first generalized the formalism for the modification of the single fragment tion function in a dense medium to the modification of the dihadron fragmentation function. The modification aris from the inclusion of next-to-leading twist contributions to the double differential inclusive cross section for observin two hadrons within a jet produced via leptoproduction from a nucleus. Higher twist contributions are suppressed by powers of the hard scale Q^2 and are thus ignored in the DIS off a nucleon target. A class of these higher twi

W. Brooks's talk and HERMES

K. Gallmeister's talk and HERMES

K. Gallmeister's talk and HERMES

Kaons/Antikaons critical test of interaction scenario

- Different production mechanism (leading/non-leading)
- Different hadronic FSI cross section

K. Gallmeister's talk and HERMES

Strange TMDs: unpolarized

unpolarized distributions first

A. Martin's talk and J.-F. Rajotte, Prague Spin 2010

There is some evidence of flavor dependence

J.-F. Rajotte, Prague Spin 2010

There is some evidence of flavor dependence

HERMES Proton

We have to understand azimuthal asymmetries

S. Melis's talk

off transversely polarized protons

Strange TMDs: longitudinally polarized

Hints of correlations between transverse momentum and spin

K. Griffioen's talk

What is going to happen with the kaons?

K. Hafidi's talk

Strange TMDs: transversely polarized

Already interesting constraints on Sivers function for sea quarks

More will come from JLab...

E. Cisbani's talk

Strange GPDs

What	do	we	know	about	GPDs?
------	----	----	------	-------	-------

GPD	probed by	constraints	status
Н	$ ho^0,\phi$ cross sections	PDFs	known
\widetilde{H}	$A_{LL}(\rho^0)$	polarized PDFs	probably small
E	$A_{UT}(ho^0,\phi)$	sum rule for 2^{nd} moments	probably small
others	-	-	unknown
Н	$ ho^0,\phi$ cross sections	PDFs, Dirac ff	known
\widetilde{H}	π^+ data	pol. PDFs, axial ff	known
E	$A_{UT}(ho^0,\phi)$	Pauli ff	known
$\widetilde{E}^{n.p.}$	π^+ data	-	uncertain
H_T	π^+ data	transversity PDFs [1]	known
others	-	_	unknown

Status of small-skewness GPDs as extracted from meson electroproduction data. The upper part is for gluons and sea quarks, the lower part for valence quarks. Except of H for gluons and sea quarks all GPDs are probed for scales of about 4 GeV^2 ([1] Anselmino (09))

P. Kroll's talk

Strange fracture functions

L. Trentadue's and O. Teryaev's talks

Tuesday, October 19, 2010 Thursday, 21 October 2010

 \mathbf{X}_{F}

INT Workshop, Seattle, September 24, 2010

 \mathbf{X}_{F}

1

_ 0

-1 Aram Kotzinian

INT Workshop, Seattle, September 24, 2010

Full picture can be surprising and beautiful

INT Workshop, Seattle,

September 24, 2010

 \mathbf{X}_{F}

Aram Kotzinian

Thank you to all participants (on behalf of all summary speakers)

Poster and Photo by Claudio Feder

Thursday, 21 October 2010

Thank you to Patrizia

