Probing strangeness in hard processes: a (partial) theory summary

A. Bacchetta

- Strange unpolarized PDF
- Strange fragmentation functions
- Strange dihadron fragmentation functions
- Strange in-medium effects
- Strange helicity distribution
- Strange TMDs
- Strange GPDs
- Strange fracture functions

Strange unpolarized PDFs

F. Kunne's talk and Martin, Stirling, Thorne, Watt, EPJ C63 (09)

J. Rojo's talk and NNPDF Coll, NPB 838 (10)

Absolute PDF uncertainties

Functional bias below 10^{-2} : no constraint from data

Linear scale

Log scale
J. Rojo's talk and NNPDF Coll, NPB 838 (10)

The shape of the strange distribution used in fits seems to be wrong

F. Kunne's talk and HERMES

More data can have a significant impact on constraining the strange distribution

The $s-\bar{s}$ distribution is poorly known
J. Rojo's talk

Strange fragmentation functions

W. Brooks's talk

K^{+}	$\mathrm{u} \overline{\mathrm{s}}$
K^{-}	$\overline{\mathrm{u}} \mathrm{s}$
K^{0}	$\mathrm{~d} \overline{\mathrm{~s}}$
\bar{K}^{0}	$\bar{d} \mathrm{~s}$

Naively, K^{-}comes more from mid-string than K^{+}:

$$
. \bar{q}-q: \bar{q}-u: \bar{u}-s: \bar{s}-\bar{s}-\quad \text { vs. } \quad \bar{q}-u: \bar{u}-s:: \bar{s}-q: \bar{q}-\bar{q}-u
$$

W. Brooks's talk

$$
\begin{gathered}
\mathrm{Q}^{2}=2.5 \mathrm{GeV}^{2} \\
\mathrm{z}=0.5
\end{gathered}
$$

M. Osipenko's talk

H. Matevosyan's talk

Large differences between different fits

E. Christova's talk and DSS, PRD75 (07)
I) all fav. FFs and all unfav. FFs are equal $\Rightarrow 2$ FFs (BKK)

$$
\begin{aligned}
D_{u}^{K^{+}} & =D_{\bar{s}}^{K^{+}} \Leftarrow \text { fav } \\
D_{\bar{u}}^{K^{+}} & =D_{s}^{K^{+}}=D_{d}^{K^{+}}=D_{\bar{d}}^{K^{+}} \Leftarrow \text { unfav }
\end{aligned}
$$

II) fav. FFs are not equal, all unfav. FFs equal $\Rightarrow 3$ FFs (DSS)

$$
\begin{array}{cl}
D_{u}^{K^{+}}, & D_{\bar{s}}^{K^{+}} \Leftarrow m_{s} \gg m_{u, d} \\
D_{\bar{u}}^{K^{+}}= & D_{s}^{K^{+}}=D_{d}^{K^{+}}=D_{\bar{d}}^{K^{+}}
\end{array}
$$

III) fav. FFs and unfav. FFs are power suppressed (Kre):

$$
\begin{aligned}
& \boldsymbol{D}_{\boldsymbol{u}}^{\boldsymbol{K}^{+}}, \quad \boldsymbol{D}_{\bar{s}}^{\boldsymbol{K}^{+}} \Leftarrow \boldsymbol{m}_{\boldsymbol{s}} \gg \boldsymbol{m}_{\boldsymbol{u}, \boldsymbol{d}} \\
& \boldsymbol{D}_{\boldsymbol{u}}^{\boldsymbol{K}^{+}}=(1-z) \boldsymbol{D}_{\bar{s}}^{\boldsymbol{K}^{+}}
\end{aligned}
$$

IV) fav. FFs are not equal and unfav. FFs are not equal
$\Rightarrow 5$ FFs (AKK)

$$
\begin{array}{ll}
D_{u}^{K^{+}}, & D_{\bar{s}}^{K^{+}} \Leftarrow \text { fav } \\
D_{\bar{u}}^{K^{+}}, & D_{s}^{K^{+}} \\
\boldsymbol{D}_{\boldsymbol{d}}^{K^{+}}= & D_{\bar{d}}^{K^{+}}
\end{array}
$$

Strange dihadron fragmentation functions

First problem: identify different channels

S. Gliske's and A. Courtoy's talks

First problem: identify different channels

S. Gliske's and A. Courtoy's talks

First problem: identify different channels

S. Gliske's and A. Courtoy's talks

Second problem: understand flavor content

$\pi^{+} \pi^{-}$	$u \bar{d} d \bar{u}$
$K^{+} K^{-}$	$u \bar{s} s \bar{u}$

A. Courtoy's talks

Second problem: understand flavor content

$\pi^{+} \pi^{-}$	$u \bar{d} d \bar{u}$
$K^{+} K^{-}$	$u \bar{s} s \bar{u}$

For $\pi^{+} \pi^{-}$
A. Courtoy's talks

Second problem: understand flavor content

$\pi^{+} \pi^{-}$	$u \bar{d} d \bar{u}$
$K^{+} K^{-}$	$u \bar{s} s \bar{u}$

For $\pi^{+} \pi^{-}$

$$
\begin{aligned}
D_{1}^{u}\left(z, M_{h}\right) & =D_{1}^{\bar{u}}\left(z, M_{h}\right)=D_{1}^{d}\left(z, M_{h}\right)=D_{1}^{d}\left(z, M_{h}\right) \\
D_{1}^{s}\left(z, M_{h}\right) & =D_{1}^{\bar{s}}\left(z, M_{h}\right) \\
D_{1}^{c}\left(z, M_{h}\right) & =D_{1}^{\bar{c}}\left(z, M_{h}\right)
\end{aligned}
$$

A. Courtoy's talks

Second problem: understand flavor content

$\pi^{+} \pi^{-}$	$u \bar{d} d \bar{u}$
$K^{+} K^{-}$	$u \bar{s} s \bar{u}$

For $\pi^{+} \pi^{-}$

$$
\begin{aligned}
D_{1}^{u}\left(z, M_{h}\right) & =D_{1}^{\bar{u}}\left(z, M_{h}\right)=D_{1}^{d}\left(z, M_{h}\right)=D_{1}^{d}\left(z, M_{h}\right) \\
D_{1}^{s}\left(z, M_{h}\right) & =D_{1}^{\bar{s}}\left(z, M_{h}\right) \\
D_{1}^{c}\left(z, M_{h}\right) & =D_{1}^{\bar{c}}\left(z, M_{h}\right)
\end{aligned}
$$

I. . $D_{1}^{s}\left(z, M_{h}\right)=0$
II. . $D_{1}^{s}\left(z, M_{h}\right)=D_{1}^{u}\left(z, M_{h}\right)$
A. Courtoy's talks

Strange helicity distribution

F. Kunne's talk

Isoscalar extraction of Δs

F. Kunne's talk and HERMES

Δs puzzle

Inclusive data ($g_{1}{ }^{N} \& a_{8}$ from hyperon decay $+S U(3)$)

$$
\rightarrow \delta \Delta s=-0.08
$$

While semi inclusive data $\rightarrow \Delta s(x) \approx 0$

- Uncertainty on quark fragmentation functions (s-quark to K)
- would need a factor of ~ 2 from DSS value of FF
- Global fits (DSSV, LSS) suggest negative Δs at low x
- reconciles the two approaches
- indeed COMPASS SIDIS: $\quad \Delta s=-0.01$ with linear extrap. $\Delta s=-0.05$ with DSSV extrap.
- Assume $S U(3)$ violation a_{8} from 0.58 to $0.42 \rightarrow \Delta s=-0.02$ Bass \&Thomas, PLB684(2010) 216

Strange in-medium modifications

W. Brooks's talk

DIS in Cold Nuclear Medium

Partonic multiple scattering: medium-stimulated gluon emission, broadened PT

prehadron forms outside the medium; or....

W. Brooks's talk

DIS in Cold Nuclear Medium

Hadron forms inside the medium; then also have prehadron/hadron interaction

W. Brooks's talk and HERMES

K. Gallmeister's talk and HERMES

Kaon

13
K. Gallmeister's talk and HERMES

- Kaons/Antikaons critical test of interaction scenario
- Different production mechanism (leading/non-leading)
- Different hadronic FSI cross section
K. Gallmeister's talk and HERMES

Strange TMDs: unpolarized

A. Martin's talk and J.-F. Rajotte, Prague Spin 2010

There is some evidence of flavor dependence

J.-F. Rajotte, Prague Spin 2010

There is some evidence of flavor dependence

M. Osipenko's talk

We have to understand
azimuthal asymmetries
S. Melis's talk

Striking differences between kaons and pions
F. Giordano's talk

Strange TMDs: longitudinally polarized

Hints of correlations between transverse momentum and spin

K. Griffioen's talk

What is going to happen with the kaons?

K. Hafidi's talk

Strange TMDs: transversely polarized

Already interesting constraints on Sivers function for sea quarks

$\chi^{2} /$ dof $=1.07$

$\chi^{2} /$ dof $=.91$

More will come from JLab...

E. Cisbani's talk

Strange GPDs

What do we know about GPDs?

GPD	probed by	constraints	status
H	ρ^{0}, ϕ cross sections	PDFs	known
\widetilde{H}	$A_{L L}\left(\rho^{0}\right)$	polarized PDFs	probably small
E	$A_{U T}\left(\rho^{0}, \phi\right)$	sum rule for $2^{n d}$ moments	probably small
others	-	-	unknown
H	ρ^{0}, ϕ cross sections	PDFs, Dirac ff	known
\widetilde{H}	π^{+}data	pol. PDFs, axial ff	known
E	$A_{U T}\left(\rho^{0}, \phi\right)$	Pauli ff	known
$\widetilde{E}^{\text {n.p. }}$	π^{+}data	-	uncertain
H_{T}	π^{+}data	transversity PDFs $[1]$	known
others	-	-	unknown

Status of small-skewness GPDs as extracted from meson electroproduction data. The upper part is for gluons and sea quarks, the lower part for valence quarks. Except of H for gluons and sea quarks all GPDs are probed for scales of about $4 \mathrm{GeV}^{2} \quad$ ([1] Anselmino (09))

P. Kroll's talk

Strange fracture functions

L. Trentadue's and O. Teryaev's talks

M. Osipenko's talk

M. Osipenko's talk

Fracture

M. Osipenko's talk

Current fragmentation

Thank you to Patrizia

