Implications of a RICH detector on the CLAS12 Cascade Program

John Price

California State University, Dominguez Hills

2010 Workshop on Probing Strangeness in Hard Processes Laboratori Nazionali di Frascati 18-21 October 2010

Dominguez Hills

John Price

PSHP 2010

Overview

- Motivation for the JLab Ξ Physics Program
- CLAS6 results
 - g6 - g11
 - g12
- Expectations with CLAS12
- Conclusions

John Price

The JLab Ξ Physics Program

- Outgrowth of the CLAS N* program
 - Learn about proton structure from N* states
 - Originally produced in πN elastic scattering
 - Later (at CLAS), π , η (etc.) photoproduction
 - Look for missing states, improve understanding of existing states
- Motivation: nucleon structure getting hard to do
 - N* states broad and overlapping
 - Little information on missing states

California State University Dominguez Hills

John Price

PSHP 2010

N* Spectrum Predictions

- Theory agrees with experiment qualitatively, but not quantitatively
- Theory predicts many more states than have been observed
- States are too broad to study conveniently

In Search of a Better Way...

- The N* states decay too quickly to use them
- We need a particle that
 - has properties related to the N*'s (#1)
 - has much narrower width than the N*'s (#2)
- $SU(3)_{F}$ symmetry points the way to a solution

John Price

$SU(3)_{F}$ Multiplets With only qqq states, $SU(3)_{F}$ gives four multiplets

one singlet:
$$(\Lambda)$$

two octets: $\begin{pmatrix} \Lambda^{0} & \Lambda^{+} \\ \Sigma^{-} & \Sigma^{0} & \Lambda & \Sigma^{+} \\ \Xi^{-} & \Xi^{0} \end{pmatrix}$
one decuplet: $\begin{pmatrix} \Delta^{-} & \Delta^{0} & \Delta^{+} & \Delta^{++} \\ \Sigma^{-} & \Sigma^{0} & \Sigma^{+} \\ \Xi^{-} & \Xi^{0} \\ \Omega^{-} \end{pmatrix}$
27 particles in all

10 California State University

PSHP 2010

18-21 October 2010

John Price

SU(3)_F symmetry

- $\mathcal{L}_{QCD} = \mathcal{L}_{0} + \mathcal{L}_{m}$
- \mathcal{L}_{0} same for all quarks
- \mathcal{L}_{0} sets the mass scale for a given multiplet
- $\mathcal{L}_{m} = -\sum_{q} m_{q} \bar{\psi}_{q}^{i} \psi_{qi}$
- \mathcal{L}_{m} sets the mass splitting within a multiplet

John Price

18-21 October 2010

California State University Dominguez Hills

Ξ quark structure

Replace two uquarks with $s \Rightarrow$ quarks

- Except for the quark content, $\Psi_{N^*}=(octet)\Psi_{\pm}$
- Properties should be related

requirement #1 seems OK

California State University **Dominguez Hills**

John Price

How good is $SU(3)_F$ Symmetry?

- Look at mass differences
 - $\Delta m[N(1440)^{\frac{1}{2}^{+}} N(939)^{\frac{1}{2}^{+}}] \approx \Delta m[\Lambda(1600)^{\frac{1}{2}^{+}} \Lambda(1115)^{\frac{1}{2}^{+}}]$
- Look at cross sections
- requirement #1 fulfilled

PSHP 2010

John Price

Using Ξ to study N*

- Ξ widths are ~9 times narrower than N* widths
 - Related to (# of light quarks)² in baryon ("9:4:1" ratio) [Riska, Eur. Phys. J. 19, 297 (2003)]
 - Visible in missing mass plot

Dominguez Hills

Ξ Physics Program

- With a sufficient Ξ sample, we can:
 - Search for missing Ξ states
 - Study production mechanism for Ξ , Ξ^*
 - Study decay properties of Ξ , Ξ^*
 - Study Gell-Mann-Okubo mass relation $(m_s m_d)$
 - Study s-s diquark correlation (baryon structure)
 - Study Ep interaction (with long target)
 - Search for Ξ -enriched hypernuclei

Dominguez Hills

John Price

Ξ Physics at JLab

The "right" way: K⁻p→K⁺Ξ⁻

- No good kaon beam available

- The JLab way: $\gamma p \rightarrow K^+ K^+ \Xi^-$
 - Initial state has S=0, final state has S=-2
 - Need to make two s quarks
 - Need to detect both K^{+}
 - All Ξ^* should be accessible via this process
 - Good kaon identification critical

California State University Dominguez Hills

First results

- Two independent data sets
 - ~2 pb⁻¹ (total) in each set
 - Lower rate in g6a
 - Better kaon ID
- Select K⁺K⁺ events
- Plot m_{χ} of $\gamma p \rightarrow K^{+}K^{+}X$
- Price et al., Phys Rev. C 71, 058201 (2005)

Dominguez Hills

John Price

Attempt at higher statistics

- g6c run
- ~2.7 pb⁻¹
- Background too high for useful analysis
- Need to improve the detector before we can take higher luminosity

California State University Dominguez Hills

John Price

PSHP 2010

Understanding the background

- For the ground state: $\gamma p \rightarrow K^+ K^+ \Xi^-$ has <u>no</u> physics background
 - Sizable background under g6b peak
 - Uncorrelated background
 - Luminosity-related
 - Misidentified pions
 - PID-related
- Strategy: improve the detector to handle design luminosity, then improve PID

California State University Dominguez Hills

John Price

PSHP 2010

g11 start counter upgrade

- Old ST 3 elements
- New ST 24 elements
- Motivation included g6c background issues
- Planned in part by Italian contingent to allow higher luminosity

START COUNTER COUPLED-PADDLE

Cascades with higher statistics

- g11 data set
- 70 pb⁻¹ γp data
- 1.6 < E_y < 3.8 GeV
- Large \equiv production rate
 - Also measured diff. cross section
 - No new excited states
- Guo et al., PRC 76, 025211 (2007)

John Price

18-21 October 2010 California State University Dominguez Hills

Latest Cascade results

- g12 data run
- 52 pb⁻¹
 - $-3.6 < E_v < 5.4 GeV$
 - Smaller E, range

– Higher $\mathsf{E}_{_{\!\boldsymbol{V}}}$ means worse π contamination

- Still no new excited states
 - Peak at 1.15 GeV due to $\gamma p \rightarrow K^{+}\pi^{+}\Sigma^{-}$
- Finalizing PID for PhD thesis

Dominguez Hills

John Price

Why don't we see more Ξ^* ?

- Maybe they're not there
 - Unlikely; several other observations
 - $\Xi(1820)$ is a 3-star state
 - BaBar just published J^{P} for $\Xi(1690)$
- Maybe we don't have enough beam
 - More likely, but still...
- Maybe we need a better detector
 - Good place to start; improve K/ π separation

Dominguez Hills

John Price

PSHP 2010

Particle ID in CLAS

- Toroidal magnetic field bends away from or toward beam
- Drift chambers momentum
- Scintillators velocity
- $m = \frac{p}{\beta \gamma}$

π/K production ratio

- Many more π , p than K
 - We lose 75% of events to
 K decay
- Good separation up to 1.5 GeV

- In CLAS6, many of our kaons are above 2 GeV
- Even more pions above this energy
 - Hard to separate
 them with the
 current setup

California State University Dominguez Hills

Moving to 12 GeV

- There, it's only getting worse
- Many kaons above 2 GeV
- Doing this w/o a RICH (or some other "magic" way to do K/π separation) will lead to madness...

Dominguez Hills

John Price

Conclusions

- The JLab Ξ program is well-established
 - Two publications thus far; more to come from g12
 - Proposal for CLAS12 coming "real soon now..."
- Seeing excited states has proven difficult
 - Results from other labs encouraging
 - Good π/K separation critical
- RICH detector may well be the key to success

California State University Dominguez Hills

John Price

PSHP 2010