Study of the Strangest Baryons with CLAS12

Igor Strakovsky, A. Afanasev, E. Pasyuk, W. Roberts

GW-HU-JLab-FSU

• Where we are now

- Ω in Photoproduction
- Ω cross section for CLAS12
- Ω measurements with CLAS12

PSHP Frascati, October 2010

Our First Goals

- Cross section measurement for $\gamma p \rightarrow \Omega^- K^+ K^+ K^0$ which is still unknown
- Study of a mechanism of the Ω^- photoproduction which should be quite specific, since it is the first baryon with constituents none of which could come from the target proton

Further Physics Goals

- Determination of the quantum numbers of the Ω^- with no assumptions
- Search for Ω^- excited states

PDG2010 gives only the small number of weak signals for $\Omega(2250)^-$, $\Omega(2380)^-$, and $\Omega(2470)^-$

Some LHC Highlights [Courtesy of Michel Spiro, July 2010]

- High rapidity plateau: gluon gluon collider?
- **Bediscovery** of all Standard Model particles: K, π , p, Λ , 1000 Ω , 1000 W,100 Z, 10 top
- Use data from less than a week!!!
- 100 papers
- Measurements of jets, di jets, soon α_s already competitive with Tevatron
- However uncertainties on luminosity and jet energy scale to be improved

May be a rival for some investigations

Where we are Now

- Critical limiting factors in any experiment of this kind are the photoproduction cross section (i.e. rate) and the background, neither of which are known
- Despite the fact that its prediction and eventual discovery was one of the brightest highlights in hadron physics, not much is known about Ω^- baryon properties and mechanism of the Ω^- production

Pre-History

• In 1962, Gell-Mann and Ne'eman predicted a new baryon, Ω^- , with S = -3, J^P = 3/2⁺, and the mass about 1670 MeV

[M. Gell-Mann and Y. Ne'eman, The Eightfold Way (W.A. Benjamin, Inc. NY, 1964)]

- The Ω(1670)⁻ observation in 1964 at BNL triumphantly confirmed the hypothesis of SU(3)_F
- The unambiguous discovery in both production and decay was reported [V.E. Barnes et al Phys Rev Lett 12, 204 (1964)] 10/17/2010

1 event They scan > 100k BC pictures with 5-10 K⁻ per picture

Igor Strakovsky 5

• M = 1673±1 MeV	100 evts	HARTOUNI-85	SPEC	80–280 GeV K ⁰ LC
• $\tau = (0.823 \pm 0.013) \times 10^{-10} s$	12k evts	BOURQUIN-84	SPEC	SPS hyperon beam
• µ _N = -2.024±0.056	235k evts	WALLACE-95	SPEC	Ω ⁻ 300–550 GeV
• $\Gamma(\Lambda K^{-})/\Gamma_{tot} = 0.678 \pm 0.007$ $\Gamma(\Xi^{0}\pi^{-})/\Gamma_{tot} = 0.236 \pm 0.007$ $\Gamma(\Xi^{-}\pi^{0})/\Gamma_{tot} = 0.086 \pm 0.004$ $\Gamma(\Xi^{-}\pi^{+}\pi^{-})/\Gamma_{tot} = (4.3 + 3.4 - 1.3) \times 10^{-4}$ $\Gamma(\Xi(1530)^{0}\pi^{-})/\Gamma_{tot} = (6.4 \pm 5.1 - 2.0) \times 10^{-4}$ $\Gamma(\Xi^{-}\gamma)/\Gamma_{tot} < 4.6 \times 10^{-4}$ (<i>CL</i> =90%) $\Gamma(\Lambda\pi^{-})/\Gamma_{tot} < 2.9 \times 10^{-6}$ (<i>CL</i> =90%)	14k evts 1947evts 759 evts 4 evts <u>)-4</u> 4 evts 0 evts ? evts	BOURQUIN-84 BOURQUIN-84 BOURQUIN-84 BOURQUIN-84 BOURQUIN-84 ALBUQUERQ94 WHITE-05	SPEC SPEC SPEC SPEC SPEC E761 HYCP	SPS hyperon beam SPS hyperon beam SPS hyperon beam SPS hyperon beam SPS hyperon beam Ω ⁻ 375 GeV pCu 800 GeV

<7x10⁻⁵ at 90% CL at FNAL [HyperCP Collab, arXiv:1008.4405]

Strange Particles: Cascade & Omega Reconstruction [Courtesy of Iouri Belikov, July 2010]

History

• The **quantum numbers** follow from the assignment of the particle to the baryon decuplet

Study [M. Deutschmann et al (Aachen-Berlin-CERN-Innsbruck-London-Vienna Collab) Phys Lett 73B, 96 (1978); M. Baublillier et al Phys Lett 78B, 342 (1978)] ruled out spin J = ¹/₂ and find consistency with J = 3/2

 The spin of the Ω-hyperon has been recently determined (but with some assumptions) by the BaBar at SLAC

[B. Aubert et al (BaBar Collab) Phys Rev Lett 97, 112001 (2006)]

• The parity of the Ω stays totally unknown

 In each of the measurements, only a small Ω⁻ data sample was obtained, and the Ω⁻ production mechanism was not well understood
 10/17/2010

$\boldsymbol{\Omega}$ in Photoproduction

- \bullet The cross sections of the Ω -production have been measured using Kaon beams
- The ANL experiment measured the K-p $\rightarrow \Omega$ -X cross section at 6.5 GeV/c as $\sigma = 1.4 \pm 0.6$ mb [J.K. Hassall *et al* Nucl Phys B189, 397 (1981)]
- The experiment SLAC-E-135 measured only forward differential cross section for K⁻p→Ω⁻X at 11 GeV/c [D. Aston *et al* Phys Rev D 32, 2270 (1985)]

 Experiment SLAC-BC-073 sought Ω-photoproduction in the γp→Ω-X reaction at 20 GeV, and provided only an upper limit of σ < 17 nb
 [K. Abe et al (SLAC Hybrid Facility Photon Collab) Phys Rev D 32, 2869 (1985)]

Cross Section Estimations for JLab12

Cross Section Estimations for JLab12

- Near 4-particle threshold, the Xsection is small, as expected, but quickly grows into the nb range (or tens of nb)
- Xsection of a few nb level in the energy range of CLAS12 seems to be a safe bet
- Overall, all 4 estimations are reasonably consistent with each other
- Clearly, we shouldn't believe an effective Lagrangian approach very far from threshold, as the Xsections continue to rise but we have only vague idea when and where this rise should finish

CLAS12 - Central Detector

Untagged Real Photon Experiment with the Basic CLAS12

• The CLAS12 electron beam luminosity is expected to be 10^{35} cm⁻²s⁻¹ Incident on hydrogen target 11 GeV electron beam generates real photons The photon luminosity in the range of E = 5–11 GeV will be 4×10^{32} cm⁻²s⁻¹

If we take the Ω -production cross section of 0.5 nbthe production rate will be about 500 Ω/hr • The MC simulation [Derek Glazier] for $\gamma p \rightarrow K^+K^0K^+\Omega^-$, $\Omega^- \rightarrow \Lambda K^-$, $\Lambda \rightarrow p\pi^-$, $K^0(K^0_s) \rightarrow \pi^+\pi^$ with all 7 charged particles detected [an unique signature] shows that acceptance is 4×10^{-4}

• With the production rate of 500 Ω /hr and acceptance of 4×10^{-4} ,

we can expect to detect in CLAS12 about 5 completely exclusive Ω -production events a day

• For these exclusive events, the background should be very small

Quasi-Real Photon Experiment with the Basic CLAS12 and Tagging Facility

• We can use CLAS12 with quasi-real photon tagging facility as well

- This forward tagger will detect electron at very small angle and provide information about virtual photon
- The luminosity of *quasi-real photons* will be about an order or two of magnitude lower than the luminosity of *real photons*
- However, we can use MM technique and therefore get significant gain in the acceptance
- If we know photon energy and momentum and detect associated $K^+K^0K^+$ to reconstruct Ω -baryon using MM in this case, the acceptance is 0.08
- This yields comparable number of events detected

CLAS12

Ν

MC for CLAS12 [Courtesy of Derek Glazier, Dec 2009]

• Set final state as $K^+K^+K^0\Omega^-$, track and analyze

• Both scenarios for Ω (untagged real photon & quasi-real tagging photon) look feasible

• The common feature of both scenarios is the possibility to collect Ω -baryon events concurrently with virtually any CLAS12 experiment

if we use additional trigger for 4+ charged particles without electron in CLAS12 10/17/2010

Parity measurement of $\Xi(1820)$ using Double Moment Analysis

[Courtesy of Lei Guo, March 2008]

CERN-SPS: Ξ -Be reaction $\Xi(1820)$ 60 Needs corroboration Events/ 15 MeV/c² 0.015 $\Xi(1950)$ $\Xi(1820) \rightarrow \Lambda \bar{K}^0, \ \Lambda \rightarrow p \pi^-$ 0.010 40 $\frac{3}{2}$ $\frac{3}{2}$ 0.005 H(11LM) 0.000 20 -0.005 -0.010-0.015 2.2 2.4 1.8 0.005 0.005 0.01 H(10LM) $M(\Lambda K^0)$ (GeV) [S.F. Biagi et al, Z Phys C 34, 175 (1987)]

• **E(1820)** counts: ~50 need to detect whole decay chain CLAS12 estimate: 500 Ξ(1820) with complete decay chain with 3 months running at 6.6 GeV

10/17/2010

Igor Strakovsky 16

MC for RICH and for Ξ & Ω Search

[Courtesy of Derek Glazier, Aug 2010]

- The Ω search is OK without the RICH while
- RICH may help the Ξ search

Central Detector

Manpower for LOI12-10-004

A. Afanasev^{1,2,*)}, M. Amaryan³⁾, Ya.I. Azimov⁴⁾, M. Battaglieri⁵⁾, V. Baturin²⁾, W.J. Briscoe⁶⁾, R. DeVita⁵⁾, L. Guo⁷⁾, D. Glazier⁸⁾, H. Haberzettl⁶⁾, D. Ireland⁹⁾, A. Kubarovsky¹⁰⁾,
V. Kubarovsky²⁾, K. Livingston⁹⁾, B. Nefkens¹¹⁾, E. Pasyuk^{2,*,**)}, J.W. Price¹²⁾, W. Roberts^{13,*)},

V. Shklyar¹⁴⁾, A. Starostin¹¹⁾, S. Stepanyan²⁾, I. Strakovsky^{6,*)}, and D. Watts⁸⁾

¹⁾ Hampton University, Hampton, VA 23668, USA

²⁾ Thomas Jefferson National Accelerator Facility, Newport News, VA 23606, USA

³⁾Old Dominion University, Norfolk, VA 23504, USA

⁴⁾ Petersburg Nuclear Physics Institute, Gatchina 188300, Russia

⁵⁾ INFN, Sezione di Genova e Dipartimento di Fisica dell'Universita, 16146 Genova, Italy

⁶⁾ The George Washington University, Washington, DC 20052, USA

⁷⁾ Florida International University, Miami, FL 33199, USA

⁸⁾ Edinburgh University, Edinburgh EH9 3JZ, United Kingdom

⁹⁾ University of Glasgow, Glasgow G12 8QQ, United Kingdom

¹⁰⁾ Rensselaer Polytechnic Institute, Troy, NY 12181, USA

¹¹⁾ University of California at Los Angeles, Los Angeles, CA 90095, USA

¹²⁾ California State University, Dominguez Hills, Carson, CA 90747, USA

¹³⁾Florida State University, Tallahassee, FL 32306, USA

¹⁴⁾Giessen University, D-35392 Giessen, Germany

10/17/2010

*) Spokesperson

*) Contact person

CLAS12 - Central Detector Layout

CLAS12 - Design Parameters (Base Equipment)

$$L=10^{35}cm^{-2}s^{-1}$$

	Forward	Central	
Angular Range			
Charged Particles	$5^{0}-40^{0}$	350-1250	
Photons	2.5 ⁰ –40 ⁰ N/A		
Resolution			
δ p/p (%) @ GeV/c	< 1 @ 5	< 5 @ 1.5	
$\delta\Theta$ (mr)	< 1	< 10-20	
δφ (mr)	< 3	< 5	
Photon Detection			
E _{min} (MeV)	> 150	N/A	
$\delta \overline{\Theta}$ (mr)	4 (@1 GeV)	N/A	
Neutron Detection			
Efficiency	< 0.7 (EC+PCAL) under		
		development	
Particle ID			
e/π	Full range	N/A	
π/p @ GeV/c	< 5	< 1.25	
π/K @ GeV/c	< 2.5	< 0.65	
K/p @ GeV/c	< 4	< 1	
$\pi^0 \rightarrow \gamma \gamma$	Full range	N/A	
η→γγ	Full range	N/A	