
where E! and B! are the electric and magnetic fields obtained
from solving the modified Maxwell equations !2". The 3
!3 matrices #DE , #HB , #DB , and #HE are defined by

!#DE" jk"#2!kF"0 j0k,

!#HB" jk"
1
2 $ jpq$krs!kF"pqrs,

!#DB" jk"#!#HE"k j"!kF"0 jpq$kpq.
!5"

The double-trace condition on (kF)#%&' translates to the
tracelessness of (#DE$#HB), while (kF)#[%&']"0 implies
the tracelessness of #DB"#(#HE)T. This leaves #DE and
#HB with eleven independent elements and the matrix #DB
"#(#HE)T with eight, which together represent the 19 in-
dependent components of kF . Note also that #DE and #HB
are parity even, while #DB"#(#HE)T is parity odd.
With these definitions, the modified Maxwell equations

!2", !3" take the familiar form

(! !H! #)0D! "0, (! •D! "0,

(! !E! $)0B! "0, (! •B! "0. !6"

As a consequence, many results from conventional electro-
dynamics in anisotropic media also hold for this Lorentz-
violating theory. For example, the energy-momentum tensor
takes the standard form in terms of E! , B! , D! and H! . This
implies the usual Poynting theorem, which can be applied in
conjunction with the symmetries of the matrices in Eq. !4" to
show that the vacuum is lossless.
For the applications to be addressed in later sections, it is

convenient to introduce the following decomposition of
(kF)#%&' coefficients:

! #̃e$" jk"
1
2 !#DE$#HB" jk,

! #̃e#" jk"
1
2 !#DE##HB" jk#

1
3 * jk!#DE" ll,

! #̃o$" jk"
1
2 !#DB$#HE" jk,

! #̃o#" jk"
1
2 !#DB##HE" jk,

#̃ tr"
1
3 !#DE" ll. !7"

The first four of these equations define traceless 3!3 matri-
ces, while the last defines a single coefficient. All parity-even
coefficients are contained in #̃e$ , #̃e# and #̃ tr , while all
parity-odd coefficients are in #̃o$ and #̃o# . The matrix #̃o$

is antisymmetric while the other three are symmetric.

The form of this decomposition helps in determining the
portion of the parameter space to which experiments are sen-
sitive and how different experiments might overlap. For ex-
ample, typical laboratory experiments with electromagnetic
cavities search for rotation-violating parity-even observables.
The sensitivity of such experiments is therefore expected to
be dominantly to the ten rotation-violating parity-even coef-
ficients #̃e$ and #̃e# . For those observables depending at
leading order on the velocity, the eight coefficients #̃o$ and
#̃o# can be expected to play a role. Finally, at second order
in the velocity one can expect the sole rotation-invariant
quantity #̃ tr to affect measurements. These considerations are
confirmed by the results of the detailed analysis in the sec-
tions below.
As another example of the use of the decomposition !7",

recall that birefringence is known to depend on ten linearly
independent combinations of the components of kF , which
can be chosen as +15,

ka"+!kF"0213, !kF"0123, !kF"0202#!kF"1313,

!kF"0303#!kF"1212, !kF"0102$!kF"1323,

!kF"0103#!kF"1223, !kF"0203$!kF"1213,

!kF"0112$!kF"0323, !kF"0113#!kF"0223,

!kF"0212#!kF"0313]. !8"

Relating these to the #̃ matrices, we find

! #̃e$" jk"#! #!k3$k4" k5 k6

k5 k3 k7

k6 k7 k4
" ,

! #̃o#" jk"! 2k2 #k9 k8

#k9 #2k1 k10

k8 k10 2!k1#k2"
" . !9"

In this way, we can see directly that birefringence is con-
trolled by the matrices #̃e$ and #̃o# .
In terms of the # matrices defined in Eq. !5", and assum-

ing as before that (kAF)-"0, the Lagrangian !1" becomes

L"
1
2 !E! 2#B! 2"$

1
2E

! •!#DE"•E! #
1
2B

! •!#HB"•B!

$E! •!#DB"•B! . !10"

Similarly, using instead the #̃ matrices defined in Eq. !7", we
find

L"
1
2 +!1$#̃ tr"E! 2#!1##̃ tr"B! 2,$

1
2E

! •! #̃e$$#̃e#"•E!

#
1
2B

! •! #̃e$##̃e#"•B! $E! •! #̃o$$#̃o#"•B! . !11"
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