1. Introduction: a historical overview
2. Modern medical diagnostics
3. Particle accelerators for medicine
o Electron linacs
o RF generators
o Beam transport
o Ion accelerators for radioisotope production and hadrontherapy
4. Conventional radiation therapy
5. Basic principles of hadrontherpy
6. Present and future of hadrontherapy
7. A tour in a hadrontherapy centre
8. Specific topics in hadrontherapy

Accelerators are fundamental in modern medicine

CATEGORY OF ACCELERATORS	NUMBER IN USE (*)
High Energy acc. (E >1GeV)	~ 120
Synchrotron radiation sources	≥ 100
Medical radioisotope production	~ 200
Radiotherapy accelerators	≥ 7500
Research acc. included biomedical research	~ 1000
Acc. for industrial processing and research	~ 1500
Ion implanters, surface modification	>7000
TOTAL	≥ 17500
(*) W. Maciszewski and W. Scharf: Int. J. of Radiation Oncology, 2004	

- About half are used for bio-medical applications

Electron linacs for radiation therapy

An electron linac mounted on a rotating gantry

How a Linac Works

Characteristics

- 3 GHz cavities

1 inch = 2.54 cm

- Traveling wave principle (electrons are already relativistic at 500 keV)

- Gradient about $10 \mathrm{MeV} / \mathrm{m}$

Radio Frequency (RF) generators

- Invented in 1939 by Russel "the inventor" and Sigurd "the pilot" Varian (interesting book: "The inventor and the pilot")
- It is fundamental for radar applications
- It is a sort of "inverted accelerator"

- Klystrons are used to produce the 3 GHz radiofrequency power that is brought to the cavities by a wave guide.
- Very high voltage: 100-200 kV (X-ray hazard!)
- "High Q" cavities
- Transverse focusing with a solenoid
- Peak power of the order of 1-5 MW or more

In a klystron:

-The electron gun (1) produces a flow of electrons.
-The bunching cavities 2 regulate the speed of the electrons so that they arrive in bunches at the output cavity.
-The bunches of electrons excite microwaves in the output cavity 3 of the klystron.
-The microwaves flow into the waveguide (4), which transports them to the accelerator.
-The electrons are absorbed in the beam stop. (5)

Magnetrons

- Every microwave oven is equipped with a magnetron!
- Operating frequency : 2450 MHz

Magnetrons

- A. W. Hull first investigated the behavior of magnetrons in 1921

Klystrons and magnetrons for accelerators

	Klystrons	Magnetrons
Cost	Higher	Lower
Complexity Phase drive	Higher	Lower
Control of the phase with many units	Yes	No (auto oscillating)

Modulators

Fig. 10. The 7.5 MW klystron is powered by a solid state modulator commercialized by Scandinova Systems AB (Uppsala). LIBO employs 10 modulator/klystron sytems.

- Modulators are used to provide the pulsed power to klystrons
- Basic principle: energy is stored on a set of capacitors which are discharged using a "thyratron" (gas) or a solid state switch.

Proton and ion accelerators

Main uses and types

Production of isotopes
 Hadrontherapy
 Cyclotrons
 (linacs)
 Cyclotrons
 Synchrocyclotrons

Synchrotrons
(linacs?)
(FFAGs?)

Components:

- Ion sources
- Injection devices
- Vacuum chamber and vacuum pumps
- Radio-frequency acceleration cavities and radio-frequency generators
- Magnets
- Bending dipoles
- Focusing quadrupoles (sextupoles)
- Extraction devices
- Beam transport lines
- Targets or dose delivery systems

General scheme

- This scheme applies to accelerator complexes (ex. synchrotrons)
- For simpler machines some of these components are not present

A typical Penning source

Schematic hot cathode Penning

- Cylindrical anode immersed in an axial magnetic field
- Electron emitter (cathode)
- Ignition of gas (ex. Hydrogen)
- A discharge (Penning discharge) is created
- The electron travel in cycloidal paths, thus increasing the probability to ionize the gas by collision
- A plasma is formed
- lons (ex. Protons or H-) are extracted with an electric field
- In cyclotrons the source can be internal and the magnetic field of the cyclotron is used
- The cathodes and the chimney need regular maintenance (ex. every 500 h of functioning)

Magnets and beam transport Iines

1D Field Calculation for a Conventional Dipole

$$
\begin{gathered}
\oint \vec{H} \cdot d \vec{s}=\int_{A} \vec{J} \cdot d \vec{A} \\
H_{\text {iron }} s_{\text {iron }}+H_{\text {gap }} s_{\text {gap }}=\frac{1}{\mu_{0} \mu_{r}} B_{\text {iron }} s_{\text {iron }}+\frac{1}{\mu_{0}} B_{\text {gap }} s_{\text {gap }}=N / \\
\mu_{r} \gg 1 \quad B_{\text {gap }}=\frac{\mu_{0} N I}{s_{\text {gap }}}
\end{gathered}
$$

Warning 1: Check that the magnetic circuit contains no flux concentration which increases the magnetic flux density above 1 T , as in this case fringe fields can no longer be neglected.

"C" and "H" bending dipoles

Magnet Metamorphosis
(C- Core, LEP Dipole)

Magnet Metamorphosis
(H-Magnet)
$N \cdot I=24000 \mathrm{~A}$

$B_{1}=0.3 \mathrm{~T}$
$B_{s}=0.065 \mathrm{~T}$
Fill.fac. 0.98

1D Field Calculation for a Conventional Quadrupole

$\oint \vec{H} \cdot d \vec{s}=\int_{1} \vec{H}_{1} \cdot d \vec{s}+\int_{2} \vec{H}_{2} \cdot d \vec{s}+\int_{3} \vec{H}_{3} \cdot d \vec{s}=N I$

$$
B_{x}=g y \quad B_{y}=g x \quad \Rightarrow \quad H=\frac{g}{\mu_{0}} \sqrt{x^{2}+y^{2}}=\frac{g}{\mu_{0}} r
$$

$$
\int_{0}^{r_{0}} H d r=\frac{g}{\mu_{0}} \int_{0}^{r_{0}} r d r=\frac{g}{\mu_{0}} \frac{r_{0}^{2}}{2}=N I \Rightarrow g=\frac{2 \mu_{0} N I}{r_{0}^{2}}
$$

Quadrupoles

- Used for focusing the beams
- The quadrupole poles are hyperbolic
- constant magnetic field gradient
- focusing "lens" in x and defocusing in y, or vice versa.

$$
B_{y}=B_{0} \frac{x}{a}, \quad B_{x}=B_{0} \frac{y}{a}
$$

$$
\ddot{x}+\frac{q v_{s} B_{0}}{\gamma m a} x=0 \quad \text { Focusing }
$$

$$
\ddot{y}-\frac{q v_{s} B_{0}}{\gamma m a} y=0 \quad \text { Defocusing }
$$

Important beam parameters

- The beam is usually represented in the phase space $\left(x, x^{d}\right)\left(y, y^{d}\right)$ for the transverse coordinates (x^{\prime} and y^{\prime} are usually measured in mrad being v_{x} / v and v_{y} / v, respectively)
- Along the beam direction, z gives the position of the particles and $\beta=\mathrm{v} / \mathrm{c}$ gives the velocity
- The beam is usually assumed to be gaussian

- The beam emittance is given by the 2 or 3σ truncated area of the gaussian
- It is usually expressed in [mm mrad] or [π mm mrad]
- It is a good figure to evaluate the quality of a beam

Strong focusing

- Quadrupoles are used in "multiplets" \rightarrow the global effect is focusing!
- Example : FODO (focusing \& defocusing) lattice in one plane. The global effect on the emittance is focusing.
x

$$
X, X^{\prime}
$$

Emittance plane (x plane only!)

- The key point is that the beam is smaller in the defocusing lenses than in the focusing lenses.
- The effect of quadrupoles can be approximated as the effect of thin lenses in optics

- The matrix formalism (operators) can be used
- Example: Focusing, drift, defocusing, drift

$$
M_{H}=M_{O} M_{D} M_{O} M_{F}=\left[\begin{array}{ll}
1 & L \\
0 & 1
\end{array}\right] \cdot\left[\begin{array}{cc}
1 & 0 \\
1 / f & 1
\end{array}\right] \cdot\left[\begin{array}{cc}
1 & L \\
0 & 1
\end{array}\right] \cdot\left[\begin{array}{cc}
1 & 0 \\
-1 / f & 1
\end{array}\right]
$$

Exercise: a Beam Transport Line (BTL)

A typical low β accelerator: the Radio Frequency Quadrupole (RFQ) accelerator

- Question: how can we accelerate 30 keV protons $(\beta=0.03)$ from an ion source to a few MeV (ex. $2 \mathrm{MeV} \beta=0.07$) ?
- A very much used solution is the RFQ based on electric quadrupoles arranged in a special geometry

Figure 1: Electric field lines in a RFQ.

29

- Three functions:
- Acceleration
- Focusing
- Bunching

- $\lambda=c T$ is fixed and determined by the RF frequency (period T)
- $\beta N 2$ determines the size of an half cell
- The mechanical structure is such to follow the evolution of β
- The cells increase in length
- Example: frequency 425 MHz
- $E=30 \mathrm{keV}$-> $\beta \mathrm{N} / 2=1.05 \mathrm{~cm}$
- $E=2 \mathrm{MeV}$-> $\beta \mathrm{N} / 2=2.45 \mathrm{~cm}$

One RFQ was used in L3 for BGO calibration

Cyclotrons for the production of radio-isotopes

The cyclotron

Cyclotron frequency

- $v=q B / 2 \pi m$
- Independent from the speed!
- For protons:
- $v=$ B [T] x 15.28 MHz/T

Main requirements for the production of radioisotopes

- High currents : $10 \mu \mathrm{~A}$ to 2 mA
- Energies:
- 10-20 MeV protons for PET isotopes (18-F)
- 30 MeV for industrial production of isotopes for SPECT
- 70 MeV or more and multi-particle (deuterons, alphas, ions) mainly for research

Example: the TR30 cyclotron

- 30 MeV , up to 1.5 mA proton beams

- Magnetic field (average) 1.2 T
- Cyclotron frequency : 18.33 MHz

Courtesy ACSI
Vancouver, Canada

Inside the cyclotron

- Two 45 degrees "dees"
- RF frequency 73 MHz (4 ${ }^{\text {th }}$ harmonic)
- RF field 50 kV

Extraction

- H- ions are accelerated (not protons)
- Extraction through stripping foil (efficiency about 100\%)

Magnetic field

- Not constant!
> - "Hills": 1.9 T
> - "Valleys": 0.5 T
> - Trajectories are not circular!
- 4 accelerations per turn: 50 keV x 4 = 200 keV/turn
- 150 turns to reach 30 MeV

Exercise: a cyclotron working in $4^{\text {th }}$ harmonic

The world's largest cyclotron

TRIUMF laboratory, Vancouver Canada

- 500 MeV protons (they start to be relativistic... see the shape of the "dees")
- up to $50 \mu \mathrm{~A}$ (25 kW power only on the beam!)
- 18 m diameter, 4000 tons

2.1.2. Cyclotron Specifications

	CYCLONE ${ }^{(1)} 18 / 9-S T$	CYCLONE ${ }^{\text {® }}$ 18/9 -HC
Accelerated ions	$\mathrm{H}^{-} \mathrm{D}^{-}$	$\mathrm{H}^{-} \mathrm{D}^{-}$
Extracted ions	H^{+}(proton)/ D^{+}(deuteron)	H^{+}(proton)/ D^{+}(deuteron)
Extraction type	Carbon foil stripper	Carbon foil stripper
Extracted current proton	$100 \mu \mathrm{~A}$	$150 \mu \mathrm{~A}$
Extracted current deuteron	$40 \mu \mathrm{~A}$	$40 \mu \mathrm{~A}$
Energy	18 MeV proton/ 9 MeV deuteron	18 MeV proton / 9 MeV deuteron
Acceleration plan	Horizontal	Horizontal
Main magnet type	Deep-valley 4 sectors	Deep-valley 4 sectors
Magnetic field	1.9 (hill) / 0.35 (valley) Tesla	1.9 (hill)/ 0.35 (valley) Tesla
Magnet power	15 kW DC	15 kWDC
RF system	Plain copper Dees water cooled	Plain copper Dees water cooled
Dee voltage	32 kV	40 kV
Frequency	42 MHz	42 MHz
RF cavity power	$3 \mathrm{~kW} /$ cavity	$4 \mathrm{~kW} /$ cavity
RF final amplifier power	12 kW	15 kW
Cyclotron pump	4 Oil diffusion pumps	4 Oil diffusion pumps
Vacuum level	$110^{-6} \mathrm{mbar}$	$110^{-6} \mathrm{mbar}$
Ion source type	Internal PIG ${ }^{\text {a }}$	Internal PIG ${ }^{\text {a }}$
Position	Fixed in central region	Fixed in central region
Quantity	One for proton/ one for deuteron ${ }^{\text {b }}$	One for proton/ one for deuteron ${ }^{\text {b }}$
Cathodes lifetime	typ. 500 h	typ. 500 h
Chimney lifetime	typ. 500 h	typ. 250 h
Extraction ports	8	8
Dual beam	Yes, standard	Yes, standard
Target vacuum valve	Yes, 8 independent	Yes, 8 independent
Stripper system	8 independent with 2 foils each	8 independent with 2 foils each
Stripper foil	$400 \mu \mathrm{gr} / \mathrm{cm}^{2}$	$400 \mu \mathrm{gr} / \mathrm{cm}^{2}$
Power consumption full beam mode	45 kW	50 kW
Power consumption vacuum standby mode	6 kW	6 kW
Water cooling system	$50 \mathrm{~kW}, 7$ to $20^{\circ} \mathrm{C}$	$50 \mathrm{~kW}, 7$ to $20^{\circ} \mathrm{C}$
Weight	24 Tons	24 Tons
Cyclotron dimensions	Dia. 2 m height 2.2 m	Dia. 2 m height 2.2 m
Internal vault dimensions	4 m (width) $\times 4 \mathrm{~m}$ (length) $\times 3 \mathrm{~m}$ (height)	4 m (width) $\times 4 \mathrm{~m}$ (length) $\times 3 \mathrm{~m}$ (height)

a. Penning Ion Gauge
b. Dual proton in option

Rome - 15-18.03.10-SB-3/8

Relativistic ions

- What happens when ions become relativistic?
- Is the basic relation
$=q B / 2 \pi m$ valid?
- Yes, but m becomes the relativistic mass ($\mathrm{m}_{0} \mathrm{Y}$) and increases with energy
- Three possibilities:
- Change pole geometry
- Increase B towards the edge
- Change the frequency during acceleration (synchrocyclotrons)

The RF System of sinchrocyclotrons

\rightarrow System composed of:
a) rotating variable capacitor
b) coaxial rectangular transmission line
c) 180° Dee
\rightarrow RF Frequency Modulation range: 20 \%
\rightarrow Power consumption : 12 kW (mean) / 59 kW (peak)

Dee: 20 kV

Rotco:
100-300 pF

Accelerators for hadrontherapy

The accelerators used today in hadrontherapy

Teletherapy with protons ($\sim 200 \mathrm{MeV}$)

CYCLOTRONS (Normal or SC)

SYNCHROTRONS

Teletherapy with carbon ions ($\sim 4800 \mathrm{MeV}$)

SYNCHROTRONS

Exercise: beam rigidity

- Why are accelerators for hardontherapy so large?
- Beam rigidity : is the product of the magnetic field B and the radius of curvature ρ for a charged particle in that magnetic field
- With some kinematics ...

- For 200 MeV protons : 2.1 T•m
- For 4800 MeV carbon ions : 5.8 T•m
- For the same B the radius of curvature is three times larger for carbon ions!

The time structures of the beams are very diffierent

CYCLOTRONS (*) (Normal or SC)

SYNCHROTRONS

A pulsed beam of fixed energy is always present

A cycling beam of variable energy has ~ 1 second gaps
(*) A synchrocyclotrons cycles at hundreds Hertz

Cyclotron solution for protons by IBA - Belgium

Courtesy, IBA, Belgium

Proton synchrotron solution by Mitsubishi

Hitachi synchrotron: M.D. Anderson center in Houston

Synchrotron solution for protons and carbon ions

- HIT project in Heidelberg (Germany)
- 24 m diameter synchrotron
- Carbon ion gantry : 600 tons, 24 m diameter

The synchrotron of the CNAO under construction in

 Pavia, Italy

- Centro Nazionale di Adroterapia Oncologica
- 25 m diameter synchrotron based on the PIMMS study (CERN, TERA, et al.)
- Protons and carbon ions
- 4 fixed beams, 3 treatment rooms

Two projects for the future of hadrontherapy

A SC cyclotron for carbon ion therapy

- Superconducting isochronous
cyclotron, accelerating $\mathrm{Q} / \mathrm{M}=1 / 2$ ions
to $400 \mathrm{MeV} / \mathrm{U}$ (B10 5+, Li6 3+, Ne20 10+)
- Diameter 6.3 meters
- Design by IBA (Belgium)
- The first prototype will be realized in Caen by the Archade consortium

The CYCLINAC: a project of the TERA Foundation,

 Italy

- CYCLINAC = CYClotron + LINAC
- Commercial cyclotron for the production of radioisotopes
- Linac to boost the beam energy for hadron-therapy

> Two main functions DIAGNOSTICS + THERAPY

IDRA

Institute for Diagnostics and RAdiotherapy

30 MeV cyclotron

Prototype of LIBO (3 GHz LInac BOoster)

Collaboration INFN-CERN-TERA 1999-2002 Module tested at LNS of INFN, Catania

Accelerated beam from the
60 MeV cyclotron of LNS
U. Amaldi et al, NIM A 521 (2004) 512

LIBO is a Side Coupled Linac (SCL)

Fig. 9 Side-coupled linac, SCL (schematic)

- Convenient at $\beta>0.3$ (about 50 MeV for protons)
- Accelerating + coupling cells (biperiodic structure)
- The field vector Ez is in phase opposition in adjacent cells
- Modular structure, with longer modules for higher $\boldsymbol{\beta}$

The cells and the bridge coupler of LIBO

A smaller "dual" accelerator

SCENT

$300 \mathrm{MeV} / \mathrm{u}$ SC cyclotron

- $\mathrm{H}_{2}{ }^{+}$molecules 300 MeV proton beam for deep seated cancer treatment
- $300 \mathrm{MeV} / \mathrm{u}$ fully stripped C ions
maximum penetration of 16 cm in water

Project of INFN LNS / IBA

Main parameters of the proton and carbon linacs

Accelerated particles	$\mathbf{p}^{+\mathbf{1}}$	\mathbf{C}^{+6}	
Type of linac	LIBO	LIBO	R1
Input energy [MeV/u]	30	250	R2
Output energy [MeV/u]	236	400	R 3
Cells per tank / tanks per module	$14 / 2$	$15 / 2$	R 4
Number of accelerating modules	22	18	R 5
Diameter of the beam hole [mm]	5.0	8.0	R 6
Total length of the linac [m]	18.7	24.0	R 7
Number of Permanent Magnetic Quadrupoles (PMQ)	45	37	R 8
Length of each PMQ (with gradients 120-170 T/m) [mm]	30	60	R 9
Synchronous phase	-15°	-15°	R 10
Peak power per module (with 10\% losses) [MW]	2.6	4.2	R 11
Effective shunt impedance ZT ${ }^{2}$ (inject.-extract.) [M $\left./ \mathrm{m} / \mathrm{m}\right]$	$22-70$	$81-86$	R 12
Average axial electric field (injection-extraction)[MV/m]	$16.4-17.8$	$21.2-20.5$	R 13
Total peak RF power for all the klystrons (R5xR11)[MW]	57	76	R 14
Klystron RF efficiency	0.42	0.42	R 15
Peak RF power for all the klystrons (R15:R14)[MW]	135	180	R 16

U. Amaldi et al, CYCLINACS: FAST-CYCLING ACCELERATORS FOR HADRONTHERAPY, arXiv:0902.3533

A comparison with respect to energy variation

Table 1. Properties of the beams of various accelerators.

Accelerator	The beam is always present?	The energy is electronically adjusted?	What is the time to vary $\mathrm{E}_{\text {max }} ?$
Cyclotrons	Yes	No	$\geq 50 \mathrm{~ms}$
Synchrotrons	No	Yes	1 s
Cyclinacs	Yes	Yes	1 ms

- Very important in hadrontherapy to treat moving targets!

