

- 1. Introduction: a historical overview
- 2. Modern medical diagnostics
- 3. Particle accelerators for medicine
 - Electron linacs
 - o **RF generators**
 - o Beam transport
 - Ion accelerators for radioisotope production and hadrontherapy
- 4. Conventional radiation therapy
- 5. Basic principles of hadrontherpy
- 6. Present and future of hadrontherapy
- 7. A tour in a hadrontherapy centre
- 8. Specific topics in hadrontherapy

Accelerators are fundamental in modern medicine

CATEGORY OF ACCELERATORS	NUMBER IN U	SE (*)
High Energy acc. (E >1GeV)	~120	
Synchrotron radiation sources	<u>>100</u>	
Medical radioisotope production	<u>~200</u>	
Radiotherapy accelerators	<u>> 7500</u>	≻9000
Research acc. included biomedical research	~1000	
Acc. for industrial processing and research	~1500	
Ion implanters, surface modification	>7000	
TOTAL	<u>> 17500</u>	

(*) W. Maciszewski and W. Scharf: Int. J. of Radiation Oncology, 2004

About half are used for bio-medical applications

Electron linacs for radiation therapy

An electron linac mounted on a rotating gantry

How a Linac Works

the oncologist's specifications.

tissues are protected.

Characteristics

1 inch = 2.54 cm

• Traveling wave principle (electrons are already relativistic at 500 keV)

Gradient about 10 MeV / m

Rome - 15-18.03.10 - SB - 3/8

Radio Frequency (RF) generators

Klystrons

- Invented in 1939 by Russel "the inventor" and Sigurd "the pilot" Varian (interesting book: "The inventor and the pilot")
- It is fundamental for radar applications
- It is a sort of "inverted accelerator"

Klystrons

- Klystrons are used to produce the 3 GHz radiofrequency power that is brought to the cavities by a wave guide.
- Very high voltage: 100-200 kV (X-ray hazard!)
- "High Q" cavities \bigcirc
- Transverse focusing with a solenoid
- Peak power of the order of 1-5 MW or more

In a klystron:

- •The electron gun **n** produces a flow of electrons.
- •The bunching cavities 🕢 regulate the speed of the electrons so that they arrive in bunches at the output cavity.
 - The bunches of electrons excite microwaves in the output cavity **3** of the klystron.
 - •The microwaves flow into the waveguide . which transports them to the accelerator.
 - •The electrons are absorbed in the beam stop.

Magnetrons

Every microwave oven is equipped with a magnetron!
Operating frequency : 2450 MHz

Magnetrons

Stable magnetic field B

Electrons from a hot filament would travel radially to the outside ring if it were not for the magnetic field. The magnetic force deflects them in the sense shown and they tend to sweep around the circle. In so doing, they "pump" the natural resonant frequency of the cavities. The currents around the resonant cavities cause them to radiate electromagnetic energy at that resonant frequency.

A. W. Hull first investigated the behavior of magnetrons in 1921

Klystrons and magnetrons for accelerators

	Klystrons	Magnetrons
Cost	Higher	Lower
Complexity	Higher	Lower
Phase drive	Yes	No (auto oscillating)
Control of the phase with many units	Yes	No (studies underway)

Modulators

Fig. 10. The 7.5 MW klystron is powered by a solid state modulator commercialized by Scandinova Systems AB (Upp-sala). LIBO employs 10 modulator/klystron systems.

- Modulators are used to provide the pulsed power to klystrons
- Basic principle: energy is stored on a set of capacitors which are discharged using a "thyratron" (gas) or a solid state switch.

Proton and ion accelerators

Main uses and types

Production of isotopes	Hadrontherapy
Cyclotrons	Cyclotrons
(linacs)	Synchrocyclotrons
	Synchrotrons
	(linacs?)
	(FFAGs?)

Components:

- Ion sources
- Injection devices
- Vacuum chamber and vacuum pumps
- Radio-frequency acceleration cavities and radio-frequency generators
- Magnets
 - Bending dipoles
 - Focusing quadrupoles (sextupoles)
- Extraction devices
- Beam transport lines
- Targets or dose delivery systems

General scheme

This scheme applies to accelerator complexes (ex. synchrotrons)
For simpler machines some of these components are not present

Ion sources

A typical Penning source

- Cylindrical anode immersed in an axial magnetic field
- Electron emitter (cathode)
- Ignition of gas (ex. Hydrogen)
- A discharge (Penning discharge) is created
- The electron travel in cycloidal paths, thus increasing the probability to ionize the gas by collision
- A plasma is formed
- Ions (ex. Protons or H-) are extracted with an electric field
- In cyclotrons the source can be internal and the magnetic field of the cyclotron is used
- The cathodes and the chimney need regular maintenance (ex. every 500 h of functioning)

Magnets and beam transport lines

Bending dipoles

1D Field Calculation for a Conventional Dipole

$$\oint \vec{H} \cdot d\vec{s} = \int_{A} \vec{J} \cdot d\vec{A}$$

$$H_{\text{iron }} S_{\text{iron }} + H_{\text{gap }} S_{\text{gap }} = \frac{1}{\mu_{0}\mu_{r}} B_{\text{iron }} S_{\text{iron }} + \frac{1}{\mu_{0}} B_{\text{gap }} S_{\text{gap }} = N I$$

$$\mu_{r} \gg 1 \qquad B_{\text{gap }} = \frac{\mu_{0} N I}{S_{\text{gap }}}$$

Warning 1: Check that the magnetic circuit contains no flux concentration which increases the magnetic flux density above 1 T, as in this case fringe fields can no longer be neglected.

"C" and "H" bending dipoles

Magnet Metamorphosis (C- Core, LEP Dipole)

Magnet Metamorphosis (H-Magnet)

Quadruploles

1D Field Calculation for a Conventional Quadrupole

$$\oint \vec{H} \cdot d\vec{s} = \int_{1} \vec{H}_{1} \cdot d\vec{s} + \int_{2} \vec{H}_{2} \cdot d\vec{s} + \int_{3} \vec{H}_{3} \cdot d\vec{s} = N\vec{I}$$

$$B_X = gy$$
 $B_Y = gx$ \Rightarrow $H = \frac{g}{\mu_0}\sqrt{x^2 + y^2} = \frac{g}{\mu_0}r$

$$\int_{0}^{r_{0}} H dr = \frac{g}{\mu_{0}} \int_{0}^{r_{0}} r dr = \frac{g}{\mu_{0}} \frac{r_{0}^{2}}{2} = NI \qquad \Rightarrow \qquad g = \frac{2\mu_{0}NI}{r_{0}^{2}}$$

Rome - 15-18.03.10 - SB - 3/8

Quadrupoles

Used for focusing the beams

- The quadrupole poles are hyperbolic
 - constant magnetic field gradient
 - <u>focusing "lens" in x and</u> <u>defocusing in y, or vice versa</u>.

$$B_y = B_0 \frac{x}{a}, \quad B_x = B_0 \frac{y}{a}$$

$$\ddot{x} + \frac{qv_s B_0}{\gamma ma} x = 0$$

Focusing

$$\ddot{y} - \frac{qv_s B_0}{\gamma ma}y = 0$$

Defocusing

Important beam parameters

- The beam is usually represented in the phase space (x, x') (y, y') for the transverse coordinates (x' and y' are usually measured in mrad being v_x/v and v_y/v, respectively)
- Along the beam direction, z gives the position of the particles and β=v/c gives the velocity
- The beam is usually assumed to be gaussian

- The beam emittance is given by the 2 or 3 σ truncated area of the gaussian
- It is usually expressed in [mm mrad] or [π mm mrad]
- It is a good figure to evaluate the quality of a beam

Strong focusing

- Quadrupoles are used in "multiplets" \rightarrow the global effect is focusing!
- Example : FODO (focusing & defocusing) lattice in one plane. The global effect on the emittance is focusing.

 The key point is that the beam is smaller in the defocusing lenses than in the focusing lenses.

Matrix formalism

 The effect of quadrupoles can be approximated as the effect of thin lenses in optics

The matrix formalism (operators) can be used
Example: Focusing, drift, defocusing, drift

$$M_{H} = M_{o}M_{D}M_{o}M_{F} = \begin{bmatrix} 1 & L \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ \frac{1}{f} & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & L \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} 1 & 0 \\ -\frac{1}{f} & 1 \end{bmatrix}$$

Exercise: a Beam Transport Line (BTL)

A typical low β accelerator: the Radio Frequency Quadrupole (RFQ) accelerator

The RFQ

• Question: how can we accelerate 30 keV protons (β =0.03) from an ion source to a few MeV (ex. 2 MeV β =0.07) ?

 A very much used solution is the RFQ based on electric quadrupoles arranged in a special geometry

Figure 1: Electric field lines in a RFQ.

The RFQ

- Three functions:
 - Acceleration
 - Focusing
 - Bunching

- λ=cT is fixed and determined by the RF frequency (period T)
- βλ/2 determines the size of an half cell
- The mechanical structure is such to follow the evolution of β
- The cells increase in length
- Example: frequency 425 MHz
 - E= 30 keV -> βλ/2 = 1.05 cm
 - E= 2 MeV -> βλ/2 = 2.45 cm

One RFQ was used in L3 for BGO calibration

Cyclotrons for the production of radio-isotopes

The cyclotron

- **Cyclotron frequency** • $v = qB / 2\pi m$
- Independent from the speed!
- For protons:
- v = B [T] x 15.28 MHz/T

Main requirements for the production of radioisotopes

- High currents : 10 μA to 2 mA
- Energies:
 - 10-20 MeV protons for PET isotopes (18-F)
 - 30 MeV for industrial production of isotopes for SPECT
 - 70 MeV or more and multi-particle (deuterons, alphas, ions) mainly for research

Example: the TR30 cyclotron

CYCLOTRON CONCEPT

Courtesy ACSI Vancouver, Canada

PRODUCTION TARGET

Inside the cyclotron

- Two 45 degrees "dees"
- RF frequency 73 MHz (4th harmonic)
- RF field 50 kV

Extraction

H⁻ ions are accelerated (not protons)

• Extraction through stripping foil (efficiency about 100%)

Magnetic field

- Not constant!
 - "Hills": 1.9 T
 - "Valleys": 0.5 T
 - Trajectories are not circular!
- 4 accelerations per turn: 50 keV x 4 = 200 keV/turn
- 150 turns to reach 30 MeV Rome - 15-18.03.10 - SB - 3/8

Exercise: a cyclotron working in 4th harmonic

The world's largest cyclotron

TRIUMF laboratory, Vancouver Canada

- 500 MeV protons (they start to be relativistic... see the shape of the "dees")
- up to 50 μA (25 kW power only on the beam!)
- 18 m diameter, 4000 tons

2.1.2. Cyclotron Specifications

	CYCLONE [®] 18/9 -ST	CYCLONE [®] 18/9 -HC	
Accelerated ions	H7/D	Hī/ Dī	
Extracted ions	H ⁺ (proton)/ D ⁺ (deuteron)	H ⁺ (proton)/ D ⁺ (deuteron)	
Extraction type	Carbon foil stripper	Carbon foil stripper	
Extracted current proton	100 µA	150 µA	
Extracted current deuteron	40 µA	40 µA	
Energy	18 MeV proton / 9 MeV deuteron	18 MeV proton / 9 MeV deuteron	
Acceleration plan	Horizontal	Horizontal	
Main magnet type	Deep-valley 4 sectors	Deep-valley 4 sectors	
Magnetic field	1.9 (hill) / 0.35 (valley) Tesla	1.9 (hill) / 0.35 (valley) Tesla	
Magnet power	15 KW DC	15 KW DC	
RF system	Plain copper Dees water cooled	Plain copper Dees water cooled	
Dee voltage	32 kV	40 kV	
Frequency	42 MHz	42 MHz	
RF cavity power	3 kW / cavity	4 kW / cavity	
RF final amplifier power	12 kW	15 kW	
Cyclotron pump	4 Oil diffusion pumps	4 Oil diffusion pumps	
Vacuum level	1 10 ⁻⁶ mbar	1 10 ⁻⁶ mbar	
lon source type	Internal PIG ^a	Internal PIG ^a	
Position	Fixed in central region	Fixed in central region	
Quantity	One for proton/ one for deuteron ^b	One for proton/ one for deuteron ^b	
Cathodes lifetime	typ. 500 h	typ.500 h	
Chimney lifetime	typ. 500 h	typ. 250 h	
Extraction ports	8	8	
Dual beam	Yes, standard	Yes, standard	
Target vacuum valve	Yes, 8 independent	Yes, 8 independent	
Stripper system	8 independent with 2 foils each	8 independent with 2 foils each	
Stripper foil	400 µgr/cm²	400 µgr/cm ²	
Power consumption full beam mode	45 kW	50 kW	
Power consumption vacuum standby mode	6 kW	6 kW	
Water cooling system	50 kW, 7 to 20 °C	50 kW, 7 to 20 °C	
Weight	24 Tons	24 Tons	
Cyclotron dimensions	Dia. 2 m height 2.2 m	Dia. 2 m height 2.2 m	
Internal vault dimensions	4 m (width) x 4 m (length) x 3 m (height)	4 m (width) x 4 m (length) x 3 m (height)	
a Penning Ion Gauge			

b. Dual proton in option

The "Bern" cyclotron

Fig. 1: CYCLONE® 18/9

Fig. 2: CYCLONE[®] 18/9 median plane showing the Dees and 4-sector poles

The synchrocyclotron

Relativistic ions

What happens when ions become relativistic?

 $\boldsymbol{\mathcal{V}}$

still

- Is the basic relation
 = qB / 2πm
 valid?
- Yes, but m becomes the relativistic mass (m₀γ) and increases with energy
- Three possibilities:
 - Change pole geometry
 - Increase B towards the edge
 - Change the frequency during acceleration (synchrocyclotrons)

The RF System of sinchrocyclotrons

\rightarrow System composed of:

a) rotating variable capacitor

b) coaxial rectangular transmission linec) 180° Dee

- → RF Frequency Modulation range: 20 %
- → Power consumption : 12 kW (mean) / 59 kW (peak)

The rotating capacitor at Orsay Synchrocyclotron

Rome - 15-18.03.10 - SB - 3/8

Accelerators for hadrontherapy

The accelerators used today in hadrontherapy

Teletherapy with protons (~ 200 MeV)

CYCLOTRONS (Normal or SC)

SYNCHROTRONS

Teletherapy with carbon ions (~ 4800 MeV)

- Why are accelerators for hardontherapy so large?
- Beam rigidity : is the product of the magnetic field B and the radius of curvature ρ for a charged particle in that magnetic field
- With some kinematics …

$$B \cdot \rho = \frac{\sqrt{2mc^2 E}}{q \cdot e \cdot c}$$

- For 200 MeV protons : 2.1 T·m
- For 4800 MeV carbon ions : 5.8 T·m
- For the same B the radius of curvature is three times larger for carbon ions!

The time structures of the beams are very different

(*) A synchrocyclotrons cycles at hundreds Hertz

Cyclotron solution for protons by IBA - Belgium

A cyclotron needs a long ESS

Courtesy, IBA, Belgium

230 MeV Cyclotron

ESS = Energy Selection System – MGH, Boston, USA

Beam energy <230 MeV According to the treatment panning

Proton synchrotron solution by Mitsubishi

Synchrotron solution for protons and carbon ions

- HIT project in Heidelberg (Germany)
- 24 m diameter synchrotron
- Carbon ion gantry : 600 tons, 24 m diameter

The synchrotron of the CNAO under construction in Pavia, Italy

Centro Nazionale di Adroterapia Oncologica

- 25 m diameter synchrotron based on the PIMMS study (CERN, TERA, et al.)
- Protons and carbon ions
- 4 fixed beams, 3 treatment rooms

Rome - 15-18.03.10 - SB - 3/8

Two projects for the future of hadrontherapy

A SC cyclotron for earbon ion therapy

 Superconducting isochronous cyclotron, accelerating Q/M = 1/2 ions to 400 MeV/U (H2 +, Alphas, Li6 3+, B10 5+, C12 6+, N14 7+, 016 8+, Ne20 10+)

- Diameter 6.3 meters
- Design by IBA (Belgium)

 The first prototype will be realized in Caen by the Archade consortium

The CYCLINAC: a project of the TERA Foundation, Italy

- CYCLINAC = CYClotron + LINAC
- Commercial cyclotron for the production of radioisotopes
- Linac to boost the beam energy for hadron-therapy

Two main functions

DIAGNOSTICS + THERAPY

Linacs for hadronterapy?

IDRA

Institute for Diagnostics and RAdiotherapy

Courtesy U. Amaldi

Prototype of LIBO (3 GHz Linac BOoster)

Collaboration INFN-CERN-TERA 1999-2002 Module tested at LNS of INFN, Catania U. Amaldi et al, NIM A 521 (2004) 512

Accelerated beam from the 60 MeV cyclotron of LNS

LIBO is a Side Coupled Linac (SCL)

- Convenient at β>0.3 (about 50 MeV for protons)
- Accelerating + coupling cells (biperiodic structure)
- The field vector Ez is in phase opposition in adjacent cells
- Modular structure, with longer modules for higher β

The cells and the bridge coupler of LIBO

Figure 6. Two half-cells (left figure) and the bridge coupler of the 50 cm long module - made of two tanks- which accelerates protons from 30 MeV to 35 MeV (right figure).

A smaller "dual" accelerator

SCENT 300 MeV/u SC cyclotron

H₂⁺ molecules

300 MeV proton beam for deep seated cancer treatment

 300 MeV/u fully stripped C ions

maximum penetration of 16 cm in water

Project of INFN LNS / IBA

Main parameters of the proton and carbon linacs

Accelerated particles	p ⁺¹	C ⁺⁶	
Type of linac	LIBO	LIBO	R1
Input energy [MeV/u]	30	250	R2
Output energy [MeV/u]	236	400	R3
Cells per tank / tanks per module	14/2	15/2	R4
Number of accelerating modules	22	18	R5
Diameter of the beam hole [mm]	5.0	8.0	R6
Total length of the linac [m]	18.7	24.0	R7
Number of Permanent Magnetic Quadrupoles (PMQ)	45	37	R8
Length of each PMQ (with gradients 120-170 T/m) [mm]	30	60	R9
Synchronous phase	-15°	-15°	R10
Peak power per module (with 10% losses) [MW]	2.6	4.2	R11
Effective shunt impedance ZT^2 (injectextract.) [M Ω /m]	22-70	81-86	R12
Average axial electric field (injection-extraction) [MV/m]	16.4-17.8	21.2-20.5	R13
Total peak RF power for all the klystrons (R5xR11) [MW]	57	76	R14
Klystron RF efficiency	0.42	0.42	R15
Peak RF power for all the klystrons (R15:R14) [MW]	135	180	R16

U. Amaldi et al, CYCLINACS: FAST-CYCLING ACCELERATORS FOR HADRONTHERAPY, arXiv:0902.3533

The energy can be continuously varied

A comparison with respect to energy variation

Table 1. Properties of the beams of various accelerators.

Accelerator	The beam is always present?	The energy is electronically adjusted?	What is the time to vary E _{max} ?
Cyclotrons	Yes	No	≥50 ms
Synchrotrons	No	Yes	1 s
Cyclinacs	Yes	Yes	1 ms

Very important in hadrontherapy to treat moving targets!

End of part III