Lepton Energy Moments in Semileptonic Charm Decays

Jernej F. Kamenik

Institut "Jožef Stefan"

BEACH 2010, Perugia, June 23, 2010

Motivation: CKM Unitarity Analysis

K.Trabelsi (CKMFitter)

See talk by
P. Paradisi

- UTA within the SM
$\epsilon_{K}, \Delta m_{d},\left|\frac{\Delta m_{s}}{\Delta m_{d}}\right|,\left|\frac{V_{u b}}{V_{c b}}\right|$
- relying on theoretical calculations of hadronic matrix elements

Motivation: CKM Unitarity Analysis

See talk by
P. Paradisi

- UTA within the SM
$\epsilon_{K}, \Delta m_{d},\left|\frac{\Delta m_{s}}{\Delta m_{d}}\right|,\left|\frac{V_{u b}}{V_{c b}}\right|$
- relying on theoretical calculations of hadronic matrix elements
- Projected Super Flavour Factory sensitivity
- $V_{u b}$ (exclusive): 3-5\%
- $V_{\text {ub }}$ (inclusive): 2-6\%
T. Browder et al. 0710.3799

Status of $B \rightarrow X_{u} \mid V$

Lange, Neubert and Paz [hep-ph/0504071]

Andersen and Gard [hep-ph/0509360]

Gambino, Giordano,
Ossola, Uraltsev [arXiv:0707.2493]

Aglietti, Di Lodovico, Ferrera, Ricciardi [arXiv:0711.0860]

Bauer, Ligeti and Luke [hep-ph/0107074]

- Inclusive determination of V_{ub} using OPE and HQE
- Expansion in α_{s} and $1 / m_{b}$
- Present precision around 6-7\%
- however 15% tension with UTA
- dominant source of theoretical uncertainty due to shapefunction modeling (kinematical phase-space cuts) 0907.5386
- A fully inclusive analysis would carry a tiny 2-3\% theoretical error

Status of $B \rightarrow X_{u} \mid v$

- At $1 / m_{b}{ }^{3}$ leading spectator effects due to dimension 6 four quark operators (WA contributions)

Bigi \& Uraltsev hep-ph/9310285

Dikeman \& Uraltsev hep-ph/9703437

Bigi, Dikeman \& Uraltsev hep-ph/9706520

- $16 \pi^{2}$ phase space enhanced compared to LO \& NLO contributions Not present at dim=7*
[Dassinger et al. hep-ph/0611168]
- Affect both the total rate and spectra (expected to populate the q^{2} / lepton energy endpoint region)
- Cannot be extracted from inclusive $B->X_{c} \mid V$ analysis
- Nor completely from comparing B^{+}and B^{0} decay modes
- Difficult to study non-perturbatively

Inclusive Semileptonic Charm Decays

(.) $D_{q} \rightarrow X \mid \vee$

- Recently determined experimentally

$$
\text { - } \begin{aligned}
B\left(D^{+} \rightarrow X e \nu\right) & =(16.13 \pm 0.20 \pm 0.33) \% \\
B\left(D^{0} \rightarrow X e \nu\right) & =(6.46 \pm 0.17 \pm 0.13) \%
\end{aligned}
$$

- Similar results for muons
N. E. Adam et al. [CLEO]
hep-ex/0604044
M. Ablikim et al. [BES]
arXiv:0804.1454
- Very recently results also for D_{s} decays

$$
B\left(D_{s} \rightarrow X e \nu\right)=(6.52 \pm, 0.39 \pm 0.15) \%
$$

- Including spectra

Inclusive Semileptonic Charm Decays

- Ratio of D_{s} and D^{0} rates shows significant [17(6)\%] deviation from unity

$$
\begin{aligned}
& \Gamma\left(D^{+} \rightarrow X e^{+} \nu\right) / \Gamma\left(D^{0} \rightarrow X e^{+} \nu\right)=0.985(28), \\
& \Gamma\left(D_{s}^{+} \rightarrow X e^{+} \nu\right) / \Gamma\left(D^{0} \rightarrow X e^{+} \nu\right)=0.828(57)
\end{aligned}
$$

Asner et al.

Signs of WA in D_{s} decays?

- How to disentangle from possible SU(3) violation?

SU(3) violation in Charm (Two examples)

- Hyperfine mass splitting $\Delta_{D_{q}}^{h f}=3\left(m_{D_{q}^{*}}^{2}-m_{D_{q}}^{2}\right) / 4$

$$
\Delta_{D^{+}}^{h f}=0.409(1) \mathrm{GeV}^{2}, \quad \Delta_{D^{0}}^{h f}=0.413(1) \mathrm{GeV}^{2}, \quad \Delta_{D_{s}}^{h f}=0.440(2) \mathrm{GeV}^{2} .
$$

- SU(3) violation at 10%
- Decay constants
- Lattice estimates: $f_{D_{s}}=260(10) \mathrm{MeV} \quad f_{D}=217(10) \mathrm{MeV}$
- SU(3) violation at 20\%

Inclusive Semileptonic Charm Decays in OPE

- Treating charm quark mass as heavy, one can attempt an expansion in $\alpha_{s}\left(m_{c}\right), ~ \Lambda / m_{c}$
- Need to estimate local operator matrix elements between hadronic states
- First appear at $1 / m_{c}{ }^{2}$ <- sources of SU(3) violation
- Heavy quark symmetry relates these estimates between the charm and beauty sectors
- Quantitative translation (renormalization) not straightforward
- Alternative approach involves an educated sum over known exclusive modes

OPE for the rate \& leptonic moments

- Rate \& leptonic energy moments in HQE \& OPE

$$
\begin{aligned}
\Gamma^{(n)} \equiv \int_{0}^{(1-r)} \frac{d \Gamma}{d x} x^{n} d x= & \frac{G_{c}^{2} m_{c}^{5}}{192 \pi^{3}}\left|V_{c s}\right|^{2}\left[f_{0}^{(n)}(r)+\frac{\alpha_{s}}{\pi} f_{1}^{(n)}(r)+\frac{\alpha_{s}^{2}}{\pi^{2}} f_{2}^{(n)}(r)+\frac{\mu_{\pi}^{2}}{m_{c}^{2}} f_{\pi}^{(n)}(r)+\frac{\mu_{G}^{2}}{m_{c}^{2}} f_{G}^{(n)}(r)\right. \\
& \left.+\frac{\rho_{L S}^{3}}{m_{c}^{3}} f_{L S}^{(n)}(r)+\frac{\rho_{D}^{3}}{m_{c}^{3}} f_{D}^{(n)}(r)+\frac{32 \pi^{2}}{m_{c}^{3}} B_{W A}^{(n) s}\right],
\end{aligned}
$$

- α_{s} corrections known up to $\alpha_{s}{ }^{2}$ for the total rate ($\alpha_{s}{ }^{2} \beta_{0}$ for the higher moments)
- $1 / m_{c}$ corrections known up to $1 / m_{c}{ }^{4}$ (all present analyses use $1 / m_{c}{ }^{3}$)
- Cabibbo suppressed modes contribute to the total rate at the level of 5%, but their effect is highly suppressed in the normalized moments

WA in OPE

- WA contributions to the rate can be related to matrix elements of dim=6 four quark operators

$$
\begin{aligned}
& \left\langle H_{Q \bar{q}}\right| O_{V-A}^{q^{\prime}}\left|H_{Q \bar{q}}\right\rangle \equiv\left\langle H_{Q \bar{q}}\right| \bar{Q} \gamma_{\mu}\left(1-\gamma_{5}\right) q^{\prime} \bar{q}^{\prime} \gamma^{\mu}\left(1-\gamma_{5}\right) Q\left|H_{Q \bar{q}}\right\rangle \\
& \left\langle H_{Q \bar{q}}\right| O_{S-P}^{q^{\prime}}\left|H_{Q \bar{q}}\right\rangle \equiv\left\langle H_{Q \bar{q}}\right| \bar{Q}\left(1-\gamma_{5}\right) q^{\prime} \bar{q}^{\prime}\left(1-\gamma_{5}\right) Q\left|H_{Q \bar{q}}\right\rangle
\end{aligned}
$$

- In the SU(3) limit one distinguishes between isosinglet/triplet contributions - only the later can be estimated from the rate differences of B^{+}and B^{0}
- Conventionally one parametrizes deviations from VSA: bag parameters

$$
\begin{aligned}
& \langle D| O_{V-A}|D\rangle=f_{D}^{2} m_{D}^{2} B_{1}, \\
& \langle D| O_{S-P}|D\rangle=f_{D}^{2} m_{D}^{2} B_{2}
\end{aligned}
$$

- Renormalization scale dependent, mix with the Darwin contributions at LO

$$
\delta \Gamma \sim\left[C_{W A} B_{W A}\left(\mu_{W A}\right)-\left(8 \ln \frac{m_{c}^{2}}{\mu_{W A}^{2}}-\frac{77}{6}\right) \frac{\rho_{D}^{3}}{m_{c}^{3}}+\mathcal{O}\left(\alpha_{s}\right)\right]
$$

- can be used to estimate WA contributions to the rate

Modeling WA

in leptonic moments

- WA contributions to the weak current correlators vanish in the OPE - need to model

Bigi \& Uraltsev hep-ph/9310285

- Expected to populate the spectrum endpoint
A. k. Leibovich et al. Develop a perturbative tail \& nonperturbative smearing

- Possible phase-space suppression by hadronic thresholds
- Can be studied directly using exclusive channels ($D_{s} \rightarrow \omega \mid v$)

The WA interpretation of rate differences

- Without resorting to quantitative OPE predictions, one can estimate WA from rate differences

$$
\begin{aligned}
\Gamma_{W A}\left(D^{0}\right) & \propto \cos ^{2} \theta_{c} B_{W A}^{s}\left(D^{0}\right)+\sin ^{2} \theta_{c} B_{W A}^{d}\left(D^{0}\right), \\
\Gamma_{W A}\left(D^{+}\right) & \propto \cos ^{2} \theta_{c} B_{W A}^{s}\left(D^{+}\right)+\sin ^{2} \theta_{c} B_{W A}^{d}\left(D^{+}\right), \\
\Gamma_{W A}\left(D_{s}\right) & \propto \cos ^{2} \theta_{c} B_{W A}^{s}\left(D_{s}\right)+\sin ^{2} \theta_{c} B_{W A}^{d}\left(D_{s}\right),
\end{aligned}
$$

- By equating the difference between D_{s} and D^{0} rates with the isotriplet component of WA
- assumes SU(3) violating effects are sub-leading
- Isosinglet component unconstrained

Confronting OPE

convergence in charm

 1004.0114- In order to constrain WA fully, need to explicitly compute semileptonic rates and/or distribution moments - compare with exp.
- Perturbative corrections known in the pole scheme

$$
\begin{aligned}
\Gamma & \left.=\Gamma_{0} \mid 1-0.72 \alpha_{s}-0.29 \alpha_{s}^{2} \beta_{0}-0.60 \mu_{G}^{2}-0.20 \mu_{\pi}^{2}+0.42 \rho_{D}^{3}+0.38 \rho_{L S}+80 B_{W A}^{(0)}\right\rfloor \\
<E> & =<E>_{0}\left[1-0.03 \alpha_{s}-0.03 \alpha_{s}^{2} \beta_{0}-0.07 \mu_{G}^{2}+0.20 \mu_{\pi}^{2}+1.4 \rho_{D}^{3}+0.29 \rho_{L S}+135 \bar{B}_{W A}^{(1)}\right] \\
<E^{2}> & =<E^{2}>_{0}\left[1-0.07 \alpha_{s}-0.05 \alpha_{s}^{2} \beta_{0}-0.14 \mu_{G}^{2}+0.52 \mu_{\pi}^{2}+3.5 \rho_{D}^{3}+0.66 \rho_{L S}+204 \bar{B}_{W A}^{(2)}\right] \\
\sigma_{E}^{2} & =\left(\sigma_{E}^{2}\right)_{0}\left[1-0.09 \alpha_{s}-0.05 \alpha_{s}^{2} \beta_{0}-0.14 \mu_{G}^{2}+1.7 \mu_{\pi}^{2}+9.4 \rho_{D}^{3}+1.4 \rho_{L S}+641 \bar{B}_{W A}^{(\sigma)}\right],
\end{aligned}
$$

c.f. Antonelli et al. 0907.5386

- Renormalon $\left(\Lambda / m_{c}\right)$ ambiguity of pole mass
- all moments affected (n-th scales as $m_{c}{ }^{n}$)
- Better to use a short distance - threshold mass definition

Convergence of

perturbative corrections

- Marginal in the pole scheme $\left(\alpha_{s}\left(m_{c}\right) \approx 0.35\right)$

$$
\frac{\Gamma}{\Gamma_{0}\left[m_{c}^{\text {pole }}\right]}=1-0.269 \epsilon-0.360 \epsilon_{\mathrm{BLM}}^{2}+0.069 \epsilon^{2}+\ldots,
$$

- Improves in short distance m_{c} schemes

$$
\frac{\Gamma}{\Gamma_{0}\left[m_{c}^{1 S}\right]}=1-0.133 \epsilon-0.006 \epsilon_{\mathrm{BLM}}^{2}-0.017 \epsilon^{2}
$$

- One can try to soften the strong dependence on the charm quark mass using information from inclusive B decays

$$
\frac{\Gamma}{\Gamma_{0}\left[m_{b}^{1 S}-\Delta\right]}=1-0.075 \epsilon-0.013 \epsilon_{\mathrm{BLM}}^{2}-0.021 \epsilon^{2}, \quad\left(\Delta=m_{b}-m_{c}\right)
$$

Convergence of

perturbative corrections

- In schemes with explicit IR cut-off, one needs to choose proper (low) IR scale (0.5-0.8 GeV)
- Need to translate OPE parameters as well (from global B fits)
- Perturbative and OPE corrections translated to kinetic scheme

$$
\begin{aligned}
\Gamma_{\text {kin }} & =1.2(3) 10^{-13} \mathrm{GeV}\left\{1+0.23 \alpha_{s}+0.18 \alpha_{s}^{2} \beta_{0}-0.79 \mu_{G}^{2}-0.26 \mu_{\pi}^{2}+1.45 \rho_{D}^{3}+0.56 \rho_{L S}^{3}+120 B_{W A}^{(0)}\right. \\
\left\langle E_{\ell}>_{\text {kin }}\right. & =0.415(21) \mathrm{GeV}\left\{1+0.03 \alpha_{s}+0.02 \alpha_{s}^{2} \beta_{0}-0.09 \mu_{G}^{2}+0.26 \mu_{\pi}^{2}+2.7 \rho_{D}^{3}+0.44 \rho_{L S}^{3}+203 \bar{B}_{W A}^{(1)}\right\}, \\
\left\langle E_{\ell}^{2}>_{\text {kin }}\right. & =0.192(20) \mathrm{GeV}^{2}\left\{1+0.001 \alpha_{s}+0.02 \alpha_{s}^{2} \beta_{0}-0.18 \mu_{G}^{2}+0.68 \mu_{\pi}^{2}+6.6 \rho_{D}^{3}+0.99 \rho_{L S}^{3}+307 \bar{B}_{W A}^{(2)}\right\} \\
\sigma_{E, k i n}^{2} & =0.019(2) \mathrm{GeV}^{2}\left\{1-0.53 \alpha_{s}-0.17 \alpha_{s}^{2} \beta_{0}-0.18 \mu_{G}^{2}+2.2 \mu_{\pi}^{2}+17 \rho_{D}^{3}+2.1 \rho_{L S}^{3}+961 \bar{B}_{W A}^{(0)}\right\},
\end{aligned}
$$

- Rate uncertainty dominated by m_{c} \& μ_{G}
- Higher leptonic moments by ρ_{D}

Extraction of WA contributions

Ligeti et al. 1003.1351

- Comparing theoretical expressions with experimental rates (in 15 scheme)
- using OPE parameters and masses as extracted from global B decay fits
- neglecting possible SU(3) violations
- Indication of a non-zero isosinglet WA contribution

$$
\begin{aligned}
& a_{0}=1.25 \pm 0.15 \\
& a_{8}=-0.20 \pm 0.12
\end{aligned}
$$

$a_{0,8}=\frac{m_{c}^{2} m_{D} f_{D}^{2}}{m_{c}^{5}} 16 \pi^{2}\left(B_{2}^{s, n s}-B_{1}^{s, n s}\right)$,

- Translates into $O(1-2 \%)$ effect in $B->X_{u} \mid \vee$ rate

Extraction of WA contributions

- Including information on the leptonic energy moments
- Different dependence of moments on the OPE parameters allows to possibly disentangle SU(3) violating effects from WA contributions
- Introduces dependence due to the modeling of the WA shape in the spectra
- Correlated WA determination from the rate and the moments

Extraction of WA contributions

- Including information on the leptonic energy moments
- Different dependence of moments on the OPE parameters allows to possibly disentangle SU(3) violating effects from WA contributions
- Introduces dependence due to the modeling of the WA shape in the spectra
- Correlated WA determination from the rate and the moments
- Allowing for O(20\%) SU(3) violation in OPE parameters
- Largest uncertainty due to ρ_{D} - linear (scale dependent) combination of ρ_{D} and WA contributions determined precisely
- For $\mu_{\mathrm{WA}} \approx 1 \mathrm{GeV}$ no clear indication of non-zero WA contributions

$$
B_{W A}^{s}=-0.0003(25) \mathrm{GeV}^{3}
$$

- Translates into $O(2 \%)$ uncertainty in $B->X_{u} \mid v$ decay rate

Conclusions

- Inclusive semileptonic charm decays can be used as a laboratory to test the OPE techniques used in the extraction of $\left|V_{u b}\right|$ and $\left|V_{c b}\right|$ from inclusive B decays
- perturbative convergence seems to be surprisingly good
- Use several observables to over-constrain the OPE parameter uncertainties and test OPE convergence
- Indications that WA related uncertainties in inclusive $\left|V_{u b}\right|$ extraction smaller than previously expected [O(1\%)]
- More tests possible in the future with additional experimental inputs (experimentally determined leptonic energy and hadronic invariant mass moments) from Cleo and BESIII

Backup Slides

Status of $B \rightarrow X_{u} \mid \vee$

Playing the

 experimentalis \dagger- One would want to compare completely inclusive leptonic energy moments in the rest-frame of the decaying hadron

Asner et al. [CLEO]
0912.4232

- This is not what Cleo presently provide:
- do not compute the leptonic energy moments
- spectra given in the lab frame
- involve a lower $E_{e}=0.2 \mathrm{GeV}$ cut
- do subtract the $D_{\mathrm{s}} \rightarrow \mathrm{T} V$ leptonic background

Playing the experimentalist

- One would want to compare completely inclusive leptonic energy moments in the rest-frame of the decaying hadron
- We try to compensate:
- extrapolate the spectra down to $E_{e}=0$ using inclusive model shapes
- compute the leptonic energy moments from extrapolated spectra (in the lab frame)
- boost the moments to the D frame by directional averaging

$$
\left.\left\langle E_{e}^{\prime}\right\rangle=\gamma\left\langle E_{e}\right\rangle\left\langle E_{e}^{\prime 2}\right\rangle=\gamma^{2}\left(1+\beta^{2} / 3\right)<E_{e}^{2}\right\rangle
$$

- D's produced in pairs at $\mathrm{E}_{\mathrm{CM}}=3774 \mathrm{MeV}$
- D_{s} s produced associated with D_{s}^{*} 's and through their decays

OPE and heavy quark expansion

- Optical theorem

$$
\begin{aligned}
\Gamma\left(H_{Q \bar{q}}\right) & =\frac{1}{2 m_{H}}\left\langle H_{Q \bar{q}}\right| \mathcal{T}\left|H_{Q \bar{q}}\right\rangle \\
\mathcal{T} & =\operatorname{Im} i \int d^{4} x T\left\{\mathcal{H}_{e f f}(x) \mathcal{H}_{e f f}(0)\right\}
\end{aligned}
$$

- (Global) quark-hadron duality, HQE \& OPE
- Equations of motion
$\bar{c} c=\bar{c} p c+\frac{1}{2 m_{c}^{2}}\left(\bar{c}\left(i D_{\perp}\right)^{2} c+\bar{c} \frac{g_{s}}{2} \sigma . G c\right)+\mathcal{O}\left(1 / m_{c}^{3}\right)$
- HQE parameters

$$
\begin{aligned}
& \mu_{\pi}^{2}=-\frac{1}{2 m_{D}}\langle D| \bar{c}\left(i D_{\perp}\right)^{2} c|D\rangle \\
& \mu_{G}^{2}=\frac{1}{2 m_{D}}\langle D| \bar{c} \frac{g_{s}}{2} \sigma \cdot B c|D\rangle
\end{aligned}
$$

- Only applicable for the total rate

OPE and heavy quark expansion

- Analogously define current correlator whose imaginary part gives the hadronic tensor contributing to inclusive semileptonic spectra
- Again use HQE \& OPE
- Requires local quark-hadron duality to hold
- Can be softened by instead computing spectral moments
- Any spectral cuts will reintroduce sensitivity to contributions beyond OPE

