

Low-mass di-muons at CMS

T. Nicholas Kypreos

University of Florida for the CMS Collaboration

outline

muon reconstruction
lessons learned from cosmics with fake di-muons
run selection in CMS
event selection
di-muons

CMS muon system

DT 2 Super Layers ($\phi\theta\phi$) for first 3 stations $\sigma_x\sim200~\mu m^2~\phi$ Super Layers in last station

4 layers in each Super Layer

RPC $\sigma_t \sim 2 \text{ ns}$

2 RPC chambers for first 2 DT stations 1 RPC chamber for last 2 DT stations and CSC chambers where |η|<1.6

cathode plane with strips

6
e3

7 trapezoidal panels form 6 gas gaps

CSC $\sigma_x \sim 100-240 \ \mu m$ 6 gaps (layers) for each chamber

muon reconstruction

tracker track

pixel+strip hits

tracker muon

tracker track matched to muon segment

global muon

pixel + strip + muon hits

stand alone muon

muon hits

- general complimentary techniques used for muon identification:
 - start with tracker and match to segments in the muon system
 - start with stand-alone muon and fit all hits with to search for a compatible tracker track

lessons from cosmics

- use cosmic-ray muons to mimic di-muon event properties
- treat muons in the top and bottom half of the detector as a di-muon
 - extract resolution estimates, efficiencies, even a full physics measurement

reconstruction and identification

2008 cosmic ray data

muon reconstruction and identification in the barrel

resolutions and physics

- asure the transverse momentum resolution using residuals between the top and bottom halves $\begin{array}{c} \operatorname{ves} \\ C_T \equiv \frac{1}{2} \left| \left(\frac{q}{p_{\mathrm{T}}} \right)_{\mathrm{top}} + \left(\frac{q}{p_{\mathrm{T}}} \right)_{\mathrm{bottom}} \right| \end{array}$ of the detector
 - low-pt regime is dominated by multiple scattering
- measure the ratio of positive to negative muon fluxes using cosmics

 $R\left(\frac{\mu^{+}}{\mu^{-}}\right) = 1.2766 \pm 0.0032 (stat.) \pm 0.0032 (syst.)$

done by averaging the top and bottom legs and fully reconstructing as one long muon

luminosity and run selection

- perform quality checks on all sub-detectors
- data are certified at the level of run and luminosity section
- require good data quality from muon and tracker sub-detectors
 - stable beam, no major problems in drift tubes, cathode strip chambers, or tracker

selection criteria

2009 √s = 900 GeV collision data

- apply low-level selection criteria on tracker tracks
- some typical track selection criteria
 - number of tracker hits
 - impact parameter,
 - common vertex
 - **●**χ²

single-muon event display

impact parameter distributions

muon pseudo-rapidity

mostly low-pT muons from light hadron decays

η distribution peaks in forward region because of lower pT thresholds

good data-MC agreement including heavy-flavor decays, hadronic punch-throughs, and mistags

p and p_T spectra

di-muon event display

di-muon invariant mass distribution (J/Ψ)

track selection based on:

- impact parameter,
- number of tracker hits
- common vertex
- χ²
- no trigger requirement
- extended ML fit
 - signal: crystal ball
 - background: exponential

Signal events: 1230 ± 47

Sigma: 42.7 ± 1.5 (stat.) MeV

 M_0 : 3.092 ± 0.001 (stat.) GeV

 $S/B = 5.4 (M_0 \pm 2.5\sigma)$

 χ^2 /ndof = 1.1

summary

acceptance, efficiency, and luminosity measurements are all key to developing physics analyses

handles on muons in CMS coming developing in 7 TeV running but go back as far as cosmic ray analyses low-mass di-muon resonances and distributions are blooming at the LHC