BEACH-2010, Perugia, June 22 ${ }^{\text {th }} 2010$

Recent CKM Element results from BaBar and Belle

Nicola Gagliardi

On behalf of the BaBar Collaboration

Outline

- Motivation:

- CKM matrix;
\checkmark Plan of the talk: $\left|\mathrm{V}_{\mathrm{ub}}\right|,\left|\mathrm{V}_{\mathrm{cb}}\right|,\left|\mathrm{V}_{\mathrm{td}} / \mathrm{V}_{\mathrm{ts}}\right|$ and $\left|\mathrm{V}_{\mathrm{us}}\right|$;
- $\left|\mathbf{V}_{\mathrm{ub}}\right|$ from B decays:
\checkmark Inclusive $\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{u}} \mathrm{l} v$;
\checkmark Exclusive $\mathrm{B} \rightarrow \pi \mathrm{lv}$;
- $\left|\mathbf{V}_{\mathbf{c b}}\right|$ from \mathbf{B} decays;
\checkmark Exclusive $\mathrm{B} \rightarrow \mathrm{Dlv}$;
- $\left|\mathbf{V}_{\mathrm{td}} / \mathbf{V}_{\mathrm{ts}}\right|$ from $\mathrm{b} \rightarrow \mathbf{s} \gamma \mathbf{b} \rightarrow \mathbf{d} \boldsymbol{\gamma}$ decays;
- $\left|\mathbf{V}_{\mathrm{us}}\right|$ from τ decays;
- Conclusions.

Weak interaction and CKM Matrix

- In the Standard Model, the mass eigenstates and the weak eigenstates do not coincide and a unitary transformation connects the two sets using the Cabilbbo-Kobayashi-Maskawa matrix (CKM);

$$
\left(\begin{array}{l}
d^{\prime} \\
s^{\prime} \\
b^{\prime}
\end{array}\right)=V_{C K M}=\left(\begin{array}{l}
d \\
s \\
b
\end{array}\right)
$$

- $\mathrm{V}_{\mathrm{CKM}}$ could be expressed in terms of three angles and one irremovable complex phase (source of $C P$ violation).

$$
\boldsymbol{V}_{C K M}=\left(\begin{array}{ccc}
V_{u d} & V_{u s} & V_{u b} \\
V_{c d} & V_{c s} & V_{c b} \\
V_{t d} & V_{t s} & V_{t b}
\end{array}\right)
$$

In this talk

Only a few of the most recent BaBar and Belle measurements will be presented:

$$
\begin{aligned}
& \tau \rightarrow S, \frac{B\left(\tau^{-} \rightarrow K^{-} \mathcal{V}_{\tau}\right)}{B\left(\tau^{-} \rightarrow \pi^{-} \mathcal{\nu}_{\tau}\right)} \\
& B \rightarrow \pi l v, B \rightarrow X_{u} l v \\
& B \rightarrow X_{d} \gamma, B \rightarrow X_{s} \gamma \\
& B \rightarrow D^{(*)} l v, B \rightarrow X_{c} l v
\end{aligned}
$$

[\mathbf{V}_{ub} | from B decays

Inclusive $\mathrm{B} \rightarrow \mathrm{X}_{\mathrm{u}} \mathrm{IV}^{2}$

$$
\Gamma\left(\bar{B} \rightarrow X_{u} \ell \bar{\nu}\right)=\underbrace{\frac{G_{F}^{2}\left|V_{u b}\right|^{2} m_{b}^{5}}{192 \pi^{3}}}[1+\underbrace{\mathcal{O}^{\mathcal{O}\left(\alpha_{s}\right)}}+\underbrace{\mathcal{O}\left(1 / m_{b}^{2}\right)}+H . C .] \quad \mathbf{5 \%} \text { uncertaintly }
$$

free quark perturbative non perturbative decay

correction

$\frac{\Gamma(b \rightarrow u \ell \nu)}{\Gamma(b \rightarrow c \ell \nu)} \approx \frac{\left|V_{u b}\right|^{2}}{\left|V_{c b}\right|^{2}} \approx \frac{1}{50} \bullet \mathrm{~m}_{\mathrm{u}}<\mathrm{m}_{\mathrm{c}}$ different kinematics

Belle Multivariate analysis

The irreducible uncertainties in the measurements to date are related to limited phase space;

No need to place stringent, hard cuts that result in zero efficiency!
\checkmark Signal side: reconstruct high momentum lepton ($\mathrm{p}_{\text {сns }}>1 \mathrm{GeV} / \mathrm{c}$);
\checkmark Boosted Decision Tree cut with many input parameters (20 event parameters) : $\mathrm{M}_{\text {miss }}^{2}, \mathrm{Q}_{\text {total }}, \mathrm{Q}_{\text {lepton }}, \mathrm{N}_{\text {lepton }}, \mathrm{Q}(\mathrm{B}), \mathrm{D}^{*}$ partial reconstruction etc...;
$\checkmark 2 \mathrm{D}$ fit to $\mathbf{M}_{\mathbf{X}}, \mathbf{q}^{2}$ with background and signal floated to determine background yield;
\checkmark Measure absolute rate.

PRL 104:021801 (2010)

$B_{\text {TAG }}$: from hadronic decays

Belle Multivariate analysis: results

PRL 104:021801 (2010)

$\sim 1035 B \rightarrow X_{u}$ l v events

657M $B \bar{B}$

$$
\Delta B\left(B \rightarrow X_{u} l v ; p_{l}>1.0 \mathrm{GeV}\right)=1.963 \times\left(1 \pm 0.088_{\text {stat }} \pm 0.081_{\text {syst }}\right) \times 10^{-3}
$$

Theory	$\left\|\mathrm{V}_{\mathrm{ub}}\right\| 10^{3}$	Stat.\%	Syst.\%	Ther.\%
BLNP	4.45	4.4	4.0	5.4
DGE	4.53	4.4	4.0	3.3
GGOU	4.47	4.4	4.0	3.0

$\mid \mathrm{V}_{\mathrm{ub}}$ | from exclusive $\mathrm{B} \rightarrow \pi(\rho) \mid \mathrm{v}$

$-\left|\mathrm{V}_{\mathrm{ub}}\right|$ can be extracted by studing $\mathrm{B}^{0++} \rightarrow \pi^{-10}\left(\rho^{-10}\right) l^{+} \nu$ decays;

- Needed input from the theory in the calculation of the form factor:
$\frac{d \Gamma\left(B^{0} \rightarrow \pi^{-} l^{+} v\right)}{d q^{2} d \cos \theta w_{l}}=\left|V_{u b}\right| \frac{G_{F}^{2} p_{\pi}^{3}}{32 \pi^{3}} \sin ^{2} \theta w_{l}\left|f_{+}\left(q^{2}\right)\right|^{2}$
PRELIMINARY
Submitted to PRD arXiv:1005.3288v1
$m_{E S}=\sqrt{s / 4-p_{B}^{2}}$
-Neutrino 4-momentum inferred from the total energy and momentum in the event; ${ }^{\bullet}$ Backgrounds (from $e^{+} e^{-} \rightarrow$ light quarks, charm and non-resonant $b \rightarrow u$) reduced by means of neural networks;
- Binned Maximum Likelihood fit to $m_{E S}$ and ΔE in bins of q^{2}. Four channel ($\pi^{-}, \pi^{0} \rho^{-}, \rho^{0}$) are fitted simultaneously imposing isospin.
$\Delta E=E_{B}-\sqrt{s} / 2$
377M $B \bar{B}$

$\left|\mathbf{V}_{\text {ub }}\right|$ from exclusive $\mathrm{B} \rightarrow \pi(\rho) \mid v$

$$
\begin{aligned}
& B\left(B^{0} \rightarrow \pi^{-} l^{+} v\right)=(1.41 \pm 0.05 \pm 0.07) \times 10^{-4} \\
& B\left(B^{0} \rightarrow \rho^{-} l^{+} v\right)=(1.75 \pm 0.15 \pm 0.27) \times 10^{-4}
\end{aligned}
$$

	q^{2} Range $\left(\mathrm{GeV}^{2}\right)$	$\Delta \zeta$ $\left(\mathrm{ps}^{-1}\right)$	$\left\|V_{u b}\right\|$ $\left(10^{-3}\right)$
$B \rightarrow \pi \ell \nu$			
LCSR [15]	$0-16$	5.44 ± 1.43	$3.63 \pm 0.12_{-0.40}^{+0.59}$
HPQCD [22]	$16-26.4$	2.02 ± 0.55	$3.21 \pm 0.17_{-0.36}^{+0.55}$
LCSR [15]	$0-26.4$	7.72 ± 2.32	$3.46 \pm 0.10_{-0.43}^{+0.68}$
HPQCD [22]	$0-26.4$	9.35 ± 3.22	$3.14 \pm 0.09_{-0.43}^{+0.68}$
$B \rightarrow \rho \ell \nu$			
LCSR [16]	$0-16.0$	13.79	2.75 ± 0.24
LCSR [16]	$0-20.3$	17.15	2.58 ± 0.22
ISGW2 [14]	$0-20.3$	14.20	2.83 ± 0.24

..or we can simultaneously fit the data and theoretical predictions:

$$
\left|V_{u b}\right|=(2.95 \pm 0.31) \times 10^{-3} \text { FNAL / MILC }
$$

V_{ub} extracted integrating the FF's predictions

| \mathbf{V}_{ub} | summary

UTfit

HFAG inclusive

HFAG exclusive

Source	$\mid \mathrm{V}_{\mathrm{ub}} \mathrm{l}\left(10^{\mathbf{3}}\right)$	Error (103)
$B \rightarrow \pi \mid v$	2.95	0.31 -
$B \rightarrow X_{u} \mid v$	4.37	0.39 -
UTFit	3.48	0.16

[\mathbf{V}_{cb} | from B decays

$\left|\mathrm{V}_{\mathrm{cb}}\right|$ from exclusive $B \rightarrow D / v$

«Exclusive determination of $\left|\mathrm{V}_{\mathrm{cb}}\right|$ through:

$$
\frac{d \Gamma(B \rightarrow D l v)}{d \omega}=\frac{G_{F}^{2}}{48 \pi^{3} \hbar}\left(m_{B}+m_{D}\right)^{2}\left(\omega^{2}-1\right)^{\frac{3}{2}}\left|V_{c b}\right|^{2} G(\omega)
$$

$\omega=\frac{m_{B}^{2}+m_{D}^{2}-q^{2}}{2 m_{B} m_{D}} \quad q^{2}=\left(p_{B}-p_{D}\right)^{2}$
${ }^{\bullet} G(w)$ is a form factor, we use the Caprini et al parametrization; - $\left|\mathrm{V}_{\mathrm{cb}}\right|$ is extracted extrapolating the differential decay at $w=1$, exploiting lattice QCD calculation;
-Data sample: 460 millions of $B B$ pairs; $\bullet B \rightarrow D l v$ events searched for the recoil of fully reconstructed hadronic B decays; 20 -Discriminant variable: $\mathrm{m}_{\text {miss }}^{2}=\mathrm{m}_{\mathrm{v}}^{2}$

$\left|\mathbf{V}_{\mathrm{cb}}\right|$ from exclusive $B \rightarrow D / v$

$\bullet \chi^{2}$ fit of $G(1)\left|V_{d}\right|$ and ρ^{2} in 10 bins of $\mathrm{w}(1<\mathrm{w}<1.6)$;

\bullet Results:
PRL 104, 011802(2010)

$$
\begin{aligned}
G(1)\left|V_{c b}\right| & =(43.0 \pm 1.9 \pm 1.4) \times 10^{-3} \\
B\left(B^{-} \rightarrow D^{0} l^{-} v\right) & =(2.31 \pm 0.08 \pm 0.09) \% \\
B\left(B^{0} \rightarrow D^{+} l^{-} v\right) & =(2.23 \pm 0.11 \pm 0.11) \%
\end{aligned}
$$

«Extraction of $\left|\mathrm{V}_{\mathrm{cb}}\right|$:
Unquenched LQCD, Nucl.Phys 140,461

$$
\left|V_{c b}\right|=(39.8 \pm 1.8 \pm 1.3 \pm 0.9) \times 10^{-3}
$$

Quenched LQCD, Phys. Lett. B655, 45
Extrapolating at w=1 - $\left|V_{c b}\right|=(41.6 \pm 1.8 \pm 1.4 \pm 0.7) \times 10^{-3}$ Interpolating around $\mathrm{w}=1.2 \rightarrow\left|V_{c b}\right|=(41.4 \pm 1.3 \pm 1.4 \pm 1.0) \times 10^{-3}{ }_{14}$

$\left|\mathbf{V}_{\mathrm{cb}}\right|$ summary

> Exclusive $\left|V_{c b}\right| \sim 2 \sigma$ lower than inclusive $\left|V_{c b}\right|$

$\left|\mathbf{V}_{\mathrm{td}} / \mathbf{V}_{\mathrm{ts}}\right|$ from B decays

$\mathrm{b} \rightarrow \mathrm{d} \gamma$ and $\mathrm{b} \rightarrow \mathbf{s} \gamma$ decays and $\left|\mathbf{V}_{\mathrm{td}} / \mathbf{V}_{\mathrm{ts}}\right|$

\bullet The decays $\mathrm{b} \rightarrow \mathrm{d} \gamma$ and $\mathrm{b} \rightarrow \mathrm{s} \gamma$ are one loop electroweak penguin diagrams ${ }^{\bullet}$ In the SM the rate $\mathrm{b} \rightarrow \mathrm{d} \gamma$ is suppressed relative to $\mathrm{b} \rightarrow \mathrm{s} \gamma$ by a factor $\left|\mathrm{V}_{\mathrm{td}} / \mathrm{V}_{\mathrm{ts}}\right|^{2}$ ${ }^{\star}$ In theories beyond the SM , new particles
 may appear in the loop (probe for NP) \bullet Reconstructed 7 decay modes for $\mathrm{X}_{\mathrm{d}}, \mathrm{X}_{\mathrm{s}}$:

$B \rightarrow X_{d \gamma}$	$B \rightarrow X_{s} \gamma$
$B^{0} \rightarrow \pi^{+} \pi^{-} \gamma$	$B^{0} \rightarrow K^{+} \pi^{-} \gamma$
$B^{+} \rightarrow \pi^{+} \pi^{0} \gamma$	$B^{+} \rightarrow K^{+} \pi^{0} \gamma$
$B^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+} \gamma$	$B^{+} \rightarrow K^{+} \pi^{+} \pi^{-} \gamma$
$B^{0} \rightarrow \pi^{+} \pi^{-} \pi^{0} \gamma$	$B^{0} \rightarrow K^{+} \pi^{-} \pi^{0} \gamma$
$B^{0} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-} \gamma$	$B^{0} \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{-} \gamma$
$B^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{0} \gamma$	$B^{+} \rightarrow K^{+} \pi^{-} \pi^{+} \pi^{0} \gamma$
$B^{+} \rightarrow \pi^{+}{ }_{\eta \gamma}$	$B^{+} \rightarrow K^{+}{ }_{\eta \gamma}$

(arXiv:1005.4087v1 submitted to PRL)
-Signal yields extracted with a 2D maximum likelihhod to the ΔE and $m_{E S}$ in two hadronic mass bins:
$>0.5-1.0 \mathrm{GeV}$ (dominated by $\mathrm{B} \rightarrow(\rho, \omega) \gamma$ and $\mathrm{B} \rightarrow \mathrm{K}^{*} \gamma$ resonances ${ }^{\nu} 1.0-2.0 \mathrm{GeV}$ (non-resonant region)

$$
\frac{B(b \rightarrow d \gamma)}{B(b \rightarrow s \gamma)}=0.040 \pm 0.009_{\text {stat }} \pm 0.010_{\text {syst }}
$$

Measurements of $\mathrm{B} \rightarrow \mathrm{K}^{*} \gamma, \mathrm{~b} \rightarrow \mathrm{~s} \gamma$ and $B \rightarrow(\rho, \omega) \gamma$ all compatible with previous results.

| $\mathbf{V}_{\text {us }}$ | from τ decays

B factories as τ factories

- B factories are also τ factories:

$$
\sigma_{\tau \tau}=0.9 n b, \sigma_{B B}=1.1 n b
$$

- Area of physics with recent results:
*Precise τ branching fractions;
- τ mass;
-Constraint on Lepton Flavor Violation;
$-\left|\mathrm{V}_{\mathrm{us}}\right|$ from τ decays
${ }^{\nu}$ Inclusive $\tau \rightarrow$ s decays;
$>$ Ratio of BR

$\left|\mathbf{V}_{\mathrm{us}}\right|$ from inclusive $\tau \rightarrow \mathbf{s}$ decays

τ decay rate into hadrons:
$R_{\tau}=\frac{\Gamma\left(\tau \rightarrow \text { hadrons } \mathcal{\nu}_{\tau}\right)}{\Gamma\left(\tau \rightarrow e \bar{\nu}_{e} \mathcal{\nu}_{\tau}\right)}=R_{\tau, \text { strange }}+R_{\tau, \text { non-strange }}$
Branching fractions are experimental inputs for $\left|\mathrm{V}_{\mathrm{us}}\right|$ determinations:

hadronic system in $\tau \rightarrow X_{\text {s }}$ v	ICHEP08 averages (\%)	References
K^{-}[from τ decay] [indirect, from K,]	$\begin{aligned} & 0.690 \pm 0.010 \\ & (0.715 \pm 0.004) \end{aligned}$	PDG 2006 + BAB4R 2008 prelim. Gamiz et al., PoSKAON:008,2008
	0.426 ± 0.016	BAB4F 2007
$\bar{K}^{0}{ }^{-}$	$0.835 \pm 0.022(S=1.4)$	Belle 2008, B4B4R 2008
$K^{-} \pi^{0} \pi^{0}$	0.058 ± 0.024	PDG 2006
$\bar{K}^{0} \pi^{0} \pi^{-}$	0.360 ± 0.040	PDG 2006
$\underline{K-\pi \pi^{+}}$	$0.273 \pm 0.002 \pm 0.009$	Phys. Rev.Lett. 100:011801,2008 I.
($\bar{K} 3 \pi)^{-}$(est'd)	0.074 ± 0.030	ALEPH 2005
$K_{1}(1270) \rightarrow K^{-} \omega$	0.067 ± 0.021	ALEPH 2005
($\mathrm{K} 4 \pi)^{-}$(est'd)	0.011 ± 0.007	ALEPH 2005
	$0.016 \pm 0.05 \pm 0.09$	Phys. Lett. B672:209-218,2009
$K^{*-\eta}$	$0.013 \pm 0.12 \pm 0.09$	Phys.Lett.B672:20)-218,200)
$K^{-}{ }^{-}$	$0.0037 \pm 0.0003(S=1.3)$	Belle 2006, BABAR 2007
TOTAL	$\begin{aligned} & 2.8447 \pm 0.0688 \\ & (2.8697 \pm 0.0680) \end{aligned}$	

Strange τ decays

-Lepton tag used to identify one hemisphere-other hemisphere contains signal particle -High π^{0} energy required in CMS \rightarrow high purity (93\%) π^{0} trajectory within 90° of $\mathrm{K}_{\mathrm{s}} \pi^{0}$ momentum $B\left(\tau^{-} \rightarrow \bar{K}^{0} \pi^{-} \pi^{0} \nu_{\tau}\right)=0.342 \pm 0.006 \pm 0.015$

Alternative $\left|\mathbf{V}_{\mathrm{us}}\right|$ determination

-Can obtain $\left|\mathrm{V}_{\mathrm{us}}\right|$ through the BF ratio:
$\frac{B\left(\tau \rightarrow K v_{\tau}\right)}{B\left(\tau \rightarrow \pi v_{\tau}\right)}=\frac{f_{k}^{2}|V u s|^{2}\left(1-m_{k}^{2} / m_{\tau}^{2}\right)^{2}}{f_{\pi}^{2}|V u d|^{2}\left(1-m_{\pi}^{2} / m_{\tau}^{2}\right)^{2}}\left(1+\delta_{L D}\right)$

- $\delta_{\text {ID }}$ long distance EW correction $\cdot\left|\mathrm{V}_{\mathrm{us}}\right|$ from allowed beta decays -Ratio $\mathrm{f}^{2}{ }_{\mathrm{K}} / \mathrm{f}^{2}{ }_{\pi}$ from lattice QCD *Select $\tau \tau$ events with:
(M.Roney CIPANP 2009)

Branching Ratios (Preliminary)

$B\left(\tau^{-} \rightarrow \pi^{-} \cdot v_{\tau}\right) / B\left(\tau^{-} \rightarrow e^{-} v_{\tau} \bar{v}_{e}\right)$
$(5.945 \pm 0.014 \pm 0.061) \times 10^{-1}$
$B\left(\tau^{-} \rightarrow K-v_{\tau}\right) / B\left(\tau^{-} \rightarrow e^{-} v_{\tau} \bar{v}_{e}\right)$
$(3.882 \pm 0.032 \pm 0.056) \times 10^{-2}$
$B(\tau)$

$(5.945 \pm 0.014 \pm 0.061) \times 10^{-1}$
$467 f^{-1}$

${ }$ One τ decaying into 3 pions ${ }^{\circ}$ The other into the signal decay
$B\left(\tau^{-} \rightarrow K \cdot v_{\tau}\right) / B\left(\tau^{-} \rightarrow \pi^{-} \cdot v_{\tau}\right)$
(6.531 $\pm 0.056 \pm 0.093) \times 10^{-2}$

By measuring ratios, benefit from systematic uncertanty cancellation
Measure: $\frac{B F\left(\boldsymbol{\tau}^{-} \rightarrow \boldsymbol{\pi}^{-} \boldsymbol{\nu}_{\tau}\right)}{B F\left(\boldsymbol{\tau}^{-} \rightarrow e^{-} \boldsymbol{\nu}_{\tau} \bar{\nu}_{e}\right)} \quad \frac{B F\left(\boldsymbol{\tau}^{-} \rightarrow K^{-} \nu_{\tau}\right)}{B F\left(\boldsymbol{\tau}^{-} \rightarrow e^{-} \nu_{\tau} \bar{\nu}_{e}\right)}$
$\frac{B F\left(\boldsymbol{\tau}^{-} \rightarrow K^{-} \nu_{\tau}\right)}{B F\left(\boldsymbol{\tau}^{-} \rightarrow \boldsymbol{\pi}^{-} \boldsymbol{\nu}_{\tau}\right)}$

$\left|\mathbf{V}_{\mathrm{us}}\right|$ status

(*) indirect $\tau \rightarrow \mathrm{K} v$
Use precise measurement of $\mathrm{B}[\mathrm{K} \rightarrow \mu v(\gamma)]$ to get indirect measurements of $\mathrm{B}[\tau \rightarrow \mathrm{Kv}(\gamma)]$
Rev.Mod.Phys 78 1043(2006)

Unitarity	0.2255 ± 0.0010
inclusive $\tau \rightarrow \mathbf{s}$	0.2151 ± 0.0026
$\frac{B F(\tau \rightarrow K v)}{B F(\tau \rightarrow \pi v)}$	0.2255 ± 0.0023

$-\left|\mathrm{V}_{\mathrm{us}}\right|$ from inclusive $\tau \rightarrow \mathrm{s}$ decays results in 3σ discrepancy from unitarity;
-However, still need to complete the program of $\tau \rightarrow \mathrm{s}$
measurements
$\rightarrow \mathrm{Next}:(K 3 \pi)^{-}, K 3 \pi^{0}, K 4 \pi^{0}$;
$-\left|\mathrm{V}_{\mathrm{us}}\right|$ from branching fraction
ratio compatible consistent with unitarity.

Conclusions

- $\left|\mathrm{V}_{\mathrm{ub}}\right|$ determinations (incl/excl) differ by 2.7 $\mathbf{\sigma}$; latest updates have increased this discrepancy
$-\left|\mathrm{V}_{\mathrm{ub}}\right|$ exclusive: 2.95 ± 0.31;
- $\left|\mathrm{V}_{\mathrm{ub}}\right|$ inclusive: 4.37 ± 0.39;
- $\left|\mathrm{V}_{\mathrm{cb}}\right|$ determinations (incl/excl) differ by $\sim 2.3 \sigma$; their average is $(40.9 \pm 1.0) \times 10^{-3}$;
- $\left|\mathrm{V}_{\mathrm{td}} / \mathrm{V}_{\mathrm{ts}}\right|$ compatible with previous measurements
- $\left|\mathrm{V}_{\mathrm{us}}\right|$:
$>$ inclusive $\tau \rightarrow$ s decays results in 3σ discrepancy from unitarity; however, still need to complete $\tau \rightarrow \mathrm{s}$ measurements $»$ BF ratio compatible consistent with unitarity.

Backup slides

The B factories

Integrated Luminosity(cal)

