

- Overview of the ATLAS detector
- Status of the experiment
- Performance and physics results in the first six months
- Future milestones

The ATLAS Detector

Muon Spectrometer ($|\eta|$ <2.7) : air-core toroids with gas-based muon chambers Muon trigger and measurement with momentum resolution < 10% up to E $_{\mu}$ ~ 1 TeV

EM calorimeter: Pb-LAr Accordion

e/γ trigger, identification and measurement

E-resolution: σ/E ~ 10%/√E

HAD calorimetry ($|\eta|$ <5) Fe/scintillator Tiles (central), Cu/W-LAr (fwd) Trigger and measurement of jets and missing E_T E-resolution: σ /E ~ 50%/ \sqrt{E} \oplus 0.03

First Six Months of Operation

- 20 Nov 23 Dec :
 - First physics run at \sqrt{s} = 900 GeV (few hours \sqrt{s} = 2.36 TeV)
 - ATLAS recorded ~ 12 μb-1, 0.5M events
- 16 Dec- 28 Feb:
 - Winter technical stop
- Since 30 March:
 - LHC running at \sqrt{s} = 7 TeV

Data-Taking Status

Dan Tovey 6 BEACH2010, Perugia

Detector Status

Subdetector	Number of Channels	Approximate Operational Fraction
Pixels	80 M	97.5%
SCT Silicon Strips	6.3 M	99.3%
TRT Transition Radiation Tracker	350 k	98.0%
LAr EM Calorimeter	170 k	98.5%
Tile calorimeter	9800	97.3%
Hadronic endcap LAr calorimeter	5600	99.9%
Forward LAr calorimeter	3500	100%
LVL1 Calo trigger	7160	99.8%
LVL1 Muon RPC trigger	370 k	99.7%
LVL1 Muon TGC trigger	320 k	100%
MDT Muon Drift Tubes	350 k	99.7%
CSC Cathode Strip Chambers	31 k	98.5%
RPC Barrel Muon Chambers	370 k	97.3%
TGC Endcap Muon Chambers	320 k	98.8%

- Overall data taking efficiency: ~ 92%
- Recorded with all detectors at nominal voltage (including Pixels): ~ 88 %

Trigger Status

- Trigger output rate: typically 200-300 Hz (up to ~350 Hz) Offline Cluster E_T [GeV]
- L < few 10^{27} cm⁻² s⁻¹:
 - (un-prescaled) minimum-bias LVL1 trigger based on hits in scintillator counters (MBTS) located at Z=± 3.5 m from collision centre
 - LVL1 muon and calo (EM, jets, ..) triggers also active
 - HLT (LVL2+EF) commissioned by running mostly in pass-through mode
- L > few 10²⁷ cm⁻² s⁻¹: MBTS trigger pre-scaled
- L > 10²⁹ cm⁻² s⁻¹: e/γ HLT chain activated in rejection mode to be able to run with lowest-threshold EM LVL1 item (3 GeV)

Jets

- Jets reconstructed with Anti-kT algorithm, calibrated with simple η/p_T-dependent corrections from test-beam, track E/p, MC → 7% scale uncertainty
- Good agreement with LO+PS MC

$\pi^0 \rightarrow \gamma \gamma$ Reconstruction

- Key benchmark for EM reconstruction
- Tool for measuring calorimeter scale and uniformity
- Energy scale measured to ~2%

Mass peak: 135.05 ± 0.04 MeV (PDG: 134.98)

Width: ~ 20 MeV

Systematics: m: 1%; σ~ 10%

Minimum Bias with Tracks

- Inclusive, model-independent measurement from inelastic events:
 - Well-defined kinematic region: ≥ 1 charged particle p_T> 500 MeV, |η| <2.5
 - Single-arm scintillator trigger with high acceptance in above phase-space
 - No removal of single/double diffractive components
 - Distributions corrected back to hadron level
- Results at \sqrt{s} = 900 GeV published in Phys. Lett. B688 (2010) 1
- Excess above MC observed → new tune (ATLAS-CONF-2010-031)

Primary Vertex Reconstruction

- ~ 10-45 tracks with p_T >150 MeV per vertex
 - Vertex z-positions : −3.2, −2.3, 0.5, 1.9 cm (vertex z-resolution better than ~200 μm)
- Expect handful of 4-vertex events in this run

b-tagged jet in 7 TeV collisions

 $p_{T} = 19$ GeV (measured at electromagnetic scale)

4 b-tagging quality tracks in the jet

Flavour Tagging

- Track counting: simple, robust
- **Jet probability tagger:**
 - **Construct combined probability of** tracks to be associated with PV
- **Secondary vertex tagger:**
 - **Reconstruct SVX and cut on decay** length significance

Data/MC agreement very encouraging at such an early stage: bodes well for bjet physics

Hadron Spectroscopy

BEACH2010, Perugia

Dan Tovey

D(*) Meson Reconstruction

ATLAS-CONF-2010-045

- Key milestone for commissioning and physics
 - QCD test with J/ψ differential cross section, polarization...
 - Crucial to understand detector performance
 - Crucial for B-physics
- Makes use of matched ID and MS tracks
- Mass consistent with PDG, width well modelled by simulation
- For more details see Maria Smizanska's talk

Very loose_selections:

- min-bias trigger at LVL1 plus HLT muon (→ sensitive to p_T (μ) as low as ~ 1 GeV)
- 2 muons with opposite sign fitted to common vertex
- p_T (ID track) > 0.5 GeV

Signal : 612 ± 34 events Background : 332 ± 9 events

Mass peak: 3.095± 0.004 GeV (PDG: 3.097)
Mass resolution: 82±7 MeV (MC: 74±0.4)

J/ψ Mass [GeV]

Missing Transverse Energy

- Sensitive to calorimeter performance (coherent noise, dead/hot cells, miscalibration, cracks etc.) and non-collision backgrounds → strong test
- Calibrated at EM scale currently
- Clean and stable

Time [days]

W→ μν Signal

Event Selection

- Level 1 muon trigger (no p_T threshold)
- One PV with 3 tracks, consistent with BS
- 1 combined MS+ID muon, p_T(combined)> 15 GeV, p_T(MS)>10 GeV
- $|p_T(combined)-p_T(MS)| < 15 GeV$
- $|z_u-z_{PV}| < 1 \text{cm}, |\eta| < 2.4$
- Any jets must pass quality cuts

Tight selection

p_T>20 GeV and relative track isolation<0.2 in ΔR=0.4

 σ^{NNLO} (W \rightarrow Iv) = 10.45 nb

 $E_{\mathsf{T}}^{\mathsf{miss}} > 25 \; \mathsf{GeV}, \; \mathsf{m}_{\mathsf{T}} > 40 \; \mathsf{GeV}$ Observed 40Expected $28.7 \pm 0.5(\mathsf{stat}) \pm 3.9(\mathsf{syst})$ $\pm 5.7(\mathsf{lumi})$ Signal $25.9 \pm 3.6(\mathsf{syst}) \pm 5.2(\mathsf{lumi})$ Background $2.8 \pm 0.5(\mathsf{stat})$

ATLAS-CONF-2010-044

 $\pm 0.8(syst)\pm 0.6(lumi)$

W→ ev Signal

- **Event Selection**
 - Level 1 EM trigger (\sim 2 GeV E $_{\rm T}$ threshold)
 - One PV with 3 tracks, consistent with beam spot
 - One loose electron with: ID track matching EM calo cluster, selection on the shower shape in the 2nd calo layer, energy in 1st had layer, cluster E_T>20 GeV
 - Any jets must pass quality cuts
- Tight selection
 - Full electron ID with TRT HT hits,
 - Conversion veto, detailed shower shape, impact parameter requirements

		_
	Entries / 5 GeV	— Data 2010 (√s = 7 TeV)
	ပ 10 ို 🔁	Conversions
	ري آ	Hadrons
	တ္ထိ 🛂	b/c
	:≝ 10 ²	W → ev
		₩ → τν
0		ATLAS Preliminary
	10	6.4nb ⁻¹
		<u> </u>
	_	
	1₌	Normalized to data
		Stat errors only
	_	- 1
	10 ⁻¹	
	10	
	0 1	0 20 30 40 50 60 70 80 90 100
	0 1	0 20 30 40 30 00 70 00 90 100
		E _T ^{miss} [GeV]
		$\sigma^{\text{NNLO}}(W \rightarrow \text{Iv}) = 10.45 \text{ nb}$

Preselected sample

E _T mis	$E_T^{miss} > 25 \text{ GeV}, m_T > 40 \text{ GeV}$		
Observed	17		
Expected	23.1±1.2(stat)±1.7(syst) ±4.6(lumi)		
Signal	20.7±1.5(syst)±4.1(lumi)		
Background	2.4±1.2(stat)±0.4(syst) ±0.5(lumi)		

ATLAS-CONF-2010-044

Run: 154822, Event: 14321500 Date: 2010-05-10 02:07:22 CEST

$$p_{T}(\mu^{-}) = 27 \text{ GeV } \eta(\mu^{-}) = 0.7$$

 $p_{T}(\mu^{+}) = 45 \text{ GeV } \eta(\mu^{+}) = 2.2$
 $M_{\mu\mu} = 87 \text{ GeV}$

Z→μμ candidate in 7 TeV collisions

Run Number: 154817, Event Number: 968871

Date: 2010-05-09 09:41:40 CEST

 $M_{ee} = 89 \text{ GeV}$

Z→ee candidate in 7 TeV collisions

Z⁰ Candidates

ATLAS-CONF-2010-044

 $\sigma^{\text{NNLO}}(Z/\gamma^* \rightarrow II) = 0.99 \text{ nb}$

	Z→ e⁺e⁻	$Z \rightarrow \mu^+ \mu^-$
Analysed Integrated Luminosity	6.7nb ⁻¹	7.9nb ⁻¹
Observed 80 GeV – 100 GeV	1	2
Observed outside 80 GeV – 100 GeV	0	1
Total expected	1.6 ±0.1(syst)±0.3 (lumi)	3.2 ±0.7(syst)±0.6 (lumi)
Background	<0.2 events From combination of MC and data driven technique	<0.01 events From Monte Carlo

- Main systematic uncertainties on prediction:
 - Luminosity (20%), Acceptance (5%), Trigger efficiency (4-7%), electron ID (5%), muon ID (10%)

Prospects for 2010/11

In 2010/11 we expect to record up to 1fb⁻¹ of integrated luminosity at 7 TeV

Standard Model

- W→I+v (4M events)
- Z→II (400k)
- ttbar→l+jets (6k)
- ttbar dilepton (2.5k)

Further Detector Commissioning Standard Model measurements

Discovery Potential

- Susy 5σ discovery above Tevatron limit with a few 100pb⁻¹
- Z'→μμ : sensitive up to 1.5TeV
- Higgs: 3σ evidence in the mass range 145-180GeV

Conclusions

- ATLAS detector commissioning with 7 TeV data is ongoing
 - First 16 nb⁻¹ of recorded luminosity.
 - Profound thanks to the machine for such rapid progress
- All detectors are performing remarkably well
 - Performance confirmed to match simulation in most cases
 - Excellent stability
- Physics analysis progressing to progressively heavier / more challenging signals
 - Min bias and underlying event studies
 - Resonances and hadron spectroscopy
 - J/ψ in electron and muon channels → flavour programme
 - First W and Z candidates in both electron and muon chanels
- ATLAS is ready for the exciting discoveries to come!

BACK-UP

30

$J/\psi \rightarrow e^+e^-$

- More challenging due to large background and signal electron bremsstrahlung
- Mass from tracks, currently uncorrected for brem effects
- For more details see Maria Smizanska's talk

Quite strong selections:

- LVL1 EM2 trigger (3 GeV threshold)
- p_⊤ (clusters) > 4, 2 GeV
- 2 EM clusters matched to tracks
- Track quality, calo shower shapes
- Key handle: large transition radiation in TRT

