Phenomenology of the 3-3-1 Models

Work in progress with G. Corcella, A. Costantini, L. Panizzi and G. M. Pruna

Margherita Ghezzi

INFN LNF, Frascati, 19/06/2019

Outline

- 2 The 3-3-1 Model
- 3 Collider Phenomenology
- Work in progress: Study of the Parameter Space
- 5 Work in progress: further directions

6 Summary

Introduction

The Original 3-3-1 Model: Motivation Gauge symmetry group: $SU(3)_C \times SU(3)_L \times U(1)_X$

$$Q_1 = \begin{pmatrix} u_L \\ d_L \\ D_L \end{pmatrix} \quad Q_2 = \begin{pmatrix} c_L \\ s_L \\ S_L \end{pmatrix} \quad Q_3 = \begin{pmatrix} b_L \\ t_L \\ T_L \end{pmatrix}$$

$$Q_{1,2} \in (3,3,-1/3)$$
 $Q_3 \in (3,\overline{3},2/3)$

$$\ell = \left(egin{array}{c} \ell_L \
u_\ell \ ar{\ell_R} \end{array}
ight) \quad \ell \in (1,ar{3},0) \quad (\ell = e,\ \mu,\ au)$$

Cancellation of the $SU(3)_L$ anomaly:

$$+9(Q_1) + 9(Q_2) - 9(Q_3) + (-3 \times 3)(L_i) = 0 \implies N_C = N_F$$

P. H. Frampton, Phys.Rev.Lett. 69 (1992) 2889-2891 Singer, Valle and Schechter, Phys.Rev. D22 (1980) 738 Pisano and Pleitez, Phys.Rev. D46 (1992) 410-417

Outline

- 2 The 3-3-1 Model
- 3 Collider Phenomenology
- 4 Work in progress: Study of the Parameter Space
- 5 Work in progress: further directions

6 Summary

Introduction	The 3-3-1 Model	Collider Phenomenology	Parameter Space	Further Directions	Summary

The 3-3-1 Model

Scalars:

$$\begin{split} \chi &= \begin{pmatrix} \chi^{A} \\ \chi^{B} \\ \chi^{0} \end{pmatrix} \in (1, 3, X_{\chi}) \qquad \rho = \begin{pmatrix} \rho^{+} \\ \rho^{0} \\ \rho^{-B} \end{pmatrix} \in (1, 3, X_{\rho}) \qquad \eta = \begin{pmatrix} \eta^{0} \\ \eta^{-} \\ \eta^{-A} \end{pmatrix} \in (1, 3, X_{\eta}) \\ Q^{A} &= \frac{1}{2} + \frac{\sqrt{3}}{2} \beta_{Q_{em}} \qquad Q^{B} = -\frac{1}{2} + \frac{\sqrt{3}}{2} \beta_{Q_{em}} \\ \mathbb{Q}_{em} &= \mathbb{T}^{3} + \beta_{Q_{em}} \mathbb{T}^{8} + \mathbb{X} \qquad \beta_{Q_{em}} = \frac{n}{\sqrt{3}} , \quad n = \pm 1, \pm 2, \pm 3 \\ X_{\chi} &= \beta_{Q_{em}} / \sqrt{3} \qquad X_{\rho} = \frac{1}{2} - \frac{\beta_{Q_{em}}}{2\sqrt{3}} \qquad X_{\eta} = -\frac{1}{2} - \frac{\beta_{Q_{em}}}{2\sqrt{3}} \\ V &= m_{1} \rho^{*} \rho + m_{2} \eta^{*} \eta + m_{3} \chi^{*} \chi \\ &+ \lambda_{1} (\rho^{*} \rho)^{2} + \lambda_{2} (\eta^{*} \eta)^{2} + \lambda_{3} (\chi^{*} \chi)^{2} \\ &+ \lambda_{12} \rho^{*} \rho \eta^{*} \eta + \lambda_{13} \rho^{*} \rho \chi^{*} \chi + \lambda_{23} \eta^{*} \eta \chi^{*} \chi \\ &+ \sqrt{2} f_{\rho \eta \chi} \rho \eta \chi \end{split}$$

Phenomenology of the 3-3-1 Model

The Particle Content

Recall:

$$\chi = \left(\begin{array}{c} \chi^A \\ \chi^B \\ \chi^0 \end{array}\right) \qquad \rho = \left(\begin{array}{c} \rho^+ \\ \rho^0 \\ \rho^{-B} \end{array}\right) \qquad \eta = \left(\begin{array}{c} \eta^0 \\ \eta^- \\ \eta^{-A} \end{array}\right)$$

Charges:

$$Q^{A} = rac{1}{2} + rac{\sqrt{3}}{2}eta_{Q_{em}} \;, \quad Q^{B} = -rac{1}{2} + rac{\sqrt{3}}{2}eta_{Q_{em}}$$

The electromagnetic charge operator:

$$\mathbb{Q}_{em} = \mathbb{T}^3 + \beta_{Q_{em}} \mathbb{T}^8 + \mathbb{X}$$

Values of $\beta_{Q_{em}}$:

$$\beta_{Q_{em}} = \frac{n}{\sqrt{3}} , \quad n = \pm 1, \pm 2, \pm 3$$

- quantization of the electromagnetic charge requires $\beta_{Q_{em}}$ to be fractional
- positive definiteness of the mass of the extra Z' gives extra constraints on n

The Particle Content

The scalars

Recall:

$$\chi = \begin{pmatrix} \chi^A \\ \chi^B \\ \chi^0 \end{pmatrix} \qquad \rho = \begin{pmatrix} \rho^+ \\ \rho^0 \\ \rho^{-B} \end{pmatrix} \qquad \eta = \begin{pmatrix} \eta^0 \\ \eta^- \\ \eta^{-A} \end{pmatrix}$$

$$eta_{Q_{em}}=\pmrac{1}{\sqrt{3}}$$
 $Q_A=1,$ $Q_B=0$
 $Q_A=0,$ $Q_B=-1$

$$\beta_{Q_{em}} = \pm \frac{2}{\sqrt{3}} \qquad Q_A = 3/2, \quad Q_B = 1/2$$
$$Q_A = -1/2, \quad Q_B = -3/2$$
$$\beta_{Q_{em}} = \pm \sqrt{3} \qquad Q_A = 2, \quad Q_B = 1$$
$$Q_A = -1, \quad Q_B = -2$$

The Sextet

- The charged leptons acquire an antisymmetric mass matrix from the Higgs triplet.
- This is not sufficient to give arbitrary mass to the leptons.
- A second, symmetric contribution comes from an additional sextet:

$$\sigma = \begin{pmatrix} \sigma_1^{++} & \sigma_1^+/\sqrt{2} & \sigma^0/\sqrt{2} \\ \sigma_1^+/\sqrt{2} & \sigma_1^0 & \sigma_2^-/\sqrt{2} \\ \sigma^0/\sqrt{2} & \sigma_2^-/\sqrt{2} & \sigma_2^{--} \end{pmatrix} \in (1, 6, 0) \qquad \left(\beta_{Q_{em}} = \pm\sqrt{3}\right)$$

$$\mathcal{L}^{\text{Yuk}}_{l,\,\text{triplet}} = \textit{\textsf{G}}^{\eta}_{ab}\,\textit{\textsf{I}}^{i}_{a}\cdot\textit{\textsf{I}}^{j}_{b}\,\eta^{*k}\epsilon^{ijk} + \text{h.c.} \qquad \mathcal{L}^{\text{Yuk.}}_{l,\text{sextet}} = \textbf{G}^{\sigma}_{ab}\textbf{l}^{i}_{a}\cdot\textbf{l}^{j}_{b}\,\sigma^{*}_{i,j}$$

P. H. Frampton, Phys.Rev.Lett. 69 (1992) 2889-2891

The Spontaneous Symmetry Breaking Pattern

Higgs and Goldstone bosons

$Re\rho_0, Re\eta_0, Re\chi_0$	3 scalars: h, H_2, H_3	3 d.o.f.
$\mathrm{Im} ho_0,\mathrm{Im}\eta_0,\mathrm{Im}\chi_0$	1 pseudoscalar H_0 , 2 Goldstones	3 d.o.f.
$ ho^+,\eta^-$	$H^{\pm},~G^{\pm}$	(2+2) d.o.f.
η^{-A}, χ^{A}	1 scalar, 1 Goldstone (complex)	(2+2) d.o.f.
ρ^{-B}, χ^{B}	1 scalar, 1 Goldstone (complex)	(2+2) d.o.f.

 $SU(3)_C \times SU(3)_L \times U(1)_X$ symmetry:

#generators = 8 + 8 + 1 = 17

#Goldstone bosons = 8

#Physical scalars = 10

 $SU(3)_C \times U(1)_{em}$ unbroken symmetry

The Spontaneous Symmetry Breaking Pattern

The vector bosons

 $SU(3)_L \times U(1)_X$ symmetry \Rightarrow 9 gauge bosons 1 photon + 8 bosons that acquire mass: W^{\pm}_{μ} , Z_{μ} and 5 BSM vector bosons Mixing among the gauge bosons:

$$W_{\mu} = W_{\mu}^{a} T^{a} = \frac{1}{2} \begin{bmatrix} W_{\mu}^{3} + \frac{1}{\sqrt{3}} W_{\mu}^{8} & \sqrt{2} W_{\mu}^{+} & \sqrt{2} Y_{\mu}^{Q_{\nu}} \\ \sqrt{2} W_{\mu}^{-} & -W_{\mu}^{3} + \frac{1}{\sqrt{3}} W_{\mu}^{8} & \sqrt{2} V_{\mu}^{Q_{\nu}} \\ \sqrt{2} Y_{\mu}^{-Q_{\nu}} & \sqrt{2} V_{\mu}^{-Q_{\nu}} & -\frac{2}{\sqrt{3}} W_{\mu}^{8} \end{bmatrix}$$

Mixing in the neutral sector:

$$\begin{split} \mathcal{W}_{\mu}^{\pm} &= \frac{1}{\sqrt{2}} \left(\mathcal{W}_{\mu}^{1} \mp i \mathcal{W}_{\mu}^{2} \right) \\ \mathcal{Y}_{\mu}^{\pm \mathcal{Q}_{Y}} &= \frac{1}{\sqrt{2}} \left(\mathcal{W}_{\mu}^{4} \mp i \mathcal{W}_{\mu}^{5} \right) \\ \mathcal{V}_{\mu}^{\pm \mathcal{Q}_{Y}} &= \frac{1}{\sqrt{2}} \left(\mathcal{W}_{\mu}^{6} \mp i \mathcal{W}_{\mu}^{7} \right) \\ \mathcal{W}_{\mu}^{3}, \ \mathcal{W}_{\mu}^{8}, \ \mathcal{X}_{\mu} \end{split}$$

X_μ and W⁸_μ mix to give B_μ and Ž'_μ
 B_μ, Ž'_μ and W³_μ mix to give Z_μ, A_μ and Z'_μ

In the limit of $v_\chi>>v_\rho$, v_η there is no mix of the Z' with B_μ and $W^3_\mu.$

Outline

2 The 3-3-1 Model

- 3 Collider Phenomenology
- Work in progress: Study of the Parameter Space
- 5 Work in progress: further directions

6 Summary

Bilepton Signatures

Corcella, Corianò, Costantini, Frampton, PLB 773 (2017) 544, arXiv:1707.01381

- $\beta=\pm\sqrt{3}:$ the 5 BSM gauge bosons in the model are:
 - a Z′

• 2 $SU(2)_L$ doublets: (Y^{--}, Y^{-}) and (Y^{++}, Y^{+}) (with lepton number $L = \pm 2$) Signature for the doublets: same signe leptons. Analysis: $pp \rightarrow Y^{++}Y^{--} \rightarrow (\ell^+\ell^+)(\ell^-\ell^-)jj$

Benchmark Point					
$m_{h_1}=125.1~{ m GeV}$	$m_{h_3}=3610~{ m GeV}$				
$m_{a_1}=3595~{ m GeV}$					
$m_{h_1^\pm}=1857~{ m GeV}$	$m_{h_2^{\pm}} = 3590 { m GeV}$				
$m_{h_1^{\pm\pm}} = 3734 \text{ GeV}$					
$m_{\gamma\pm\pm}$ = 873.3 GeV	$m_{Y\pm} = 875.7 \text{ GeV}$				
$m_{Z'} = 3229 { m GeV}$					
$m_D = 1650 { m ~GeV}$	$m_S = 1660 { m GeV}$	$m_T = 1700 \; { m GeV}$			

Bilepton Signatures

Corcella, Corianò, Costantini, Frampton, PLB 773 (2017) 544, arXiv:1707.01381

(a) Lepton transverse momentum distribution; (b) Lepton pseudorapidity distribution, (c) Same-sign lepton-pair invariant mass; (d) Angle between same-sign leptons; (e) Invariant opening angle $\Delta R_{j\ell}$ between the hardest jet and its closest lepton; and (f) p_T of the hardest jet j_1 . The solid histograms are the bilepton signals, the dashes correspond to the ZZ background, the dots to $t\bar{t}Z$ processes.

Phenomenology of the 3-3-1 Model

Bileptons: Scalars vs. Vectors

Corcella, Corianò, Costantini, Frampton, PLB 785 (2018) 73, arXiv:1806.04536

- Model: $\beta_{Q_{em}} = \pm \sqrt{3}$
- Analysis: $pp \rightarrow Y^{++}Y^{--}(H^{++}H^{--}) \rightarrow (\ell^+\ell^+)(\ell^-\ell^-)$
- Assumption on the BRs: $BR(Y^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}) \simeq BR(H^{\pm\pm} \rightarrow \ell^{\pm}\ell^{\pm}) \simeq 1/3$

- Numerical analysis for a benchmark point (see next slide)
- Total cross sections @LHC 13 TeV:
 - $\sigma(pp \rightarrow YY \rightarrow 4\ell) \simeq 4.3$ fb;
 - $\sigma(pp \rightarrow HH \rightarrow 4\ell) \simeq 0.3 \text{fb}$
- Differences are due to the spin of the Y/H.
- Background: $\sigma(pp \rightarrow Z \rightarrow 4\ell) \simeq 6.1$ fb (after cuts)

Bileptons: Scalars vs. Vectors

Corcella, Corianò, Costantini, Frampton, PLB 785 (2018) 73, arXiv:1806.04536

Benchmark Point					
$m_{h_1} = 126.3 { m GeV}$	$m_{h_2} = 1804.4 { m GeV}$	$m_{h_3} = 2474.0 { m GeV}$			
$m_{h_4} = 6499.8 { m GeV}$	$m_{h_5} = 6528.1 { m GeV}$				
$m_{a_1} = 1804.5 { m GeV}$	$m_{\rm a_2} = 6496.0~{ m GeV}$	$m_{a_3} = 6528.1 { m GeV}$			
$m_{h_1^\pm} = 1804.5 { m GeV}$	$m_{h_2^\pm}=1873.4\mathrm{GeV}$	$m_{h_3^\pm} = 6498.1~{ m GeV}$			
$m_{h_1^{\pm\pm}} = 878.3 { m GeV}$	$m_{h_2^{\pm\pm}} = 6464.3 \; { m GeV}$	$m_{h_3^{\pm\pm}}=6527.7{ m GeV}$			
$m_{Y^{\pm\pm}}=$ 878.3 GeV	$m_{Y^\pm}=881.8~{ m GeV}$	$m_{Z'} = 3247.6 { m GeV}$			
$m_D = 1650.0 \text{ GeV}$	$m_S=1660.0~{ m GeV}$	$m_T=1700.0~{ m GeV}$			

Bileptons: Scalars vs. Vectors

Corcella, Corianò, Costantini, Frampton, PLB 785 (2018) 73, arXiv:1806.04536

Distributions of the transverse momentum of the hardest (a) and next-to-hardest lepton (b), same-sign lepton invariant mass (c), invariant opening angle between the two hardest leptons (d), rapidity of the leading lepton (e), polar angle between same-sign leptons (f). The solid blue histograms are the spectra yielded by vector bileptons, the red dots correspond to scalar doubly-charged Higgs bosons, the blue dashes to the ZZ Standard Model background. Black solid: YY; red dotted: HH; blue dotted: ZZ (SM bkg)

Phenomenology of the 3-3-1 Model

Phenomenology of the Z'

Branching ratios:

$$\beta_{Q_{em}} = -1/\sqrt{3}, 1/\sqrt{3}, -\sqrt{3}, \sqrt{3}; \ m_F = 1 \ {\rm TeV}, \ m_{H^\pm} = 500 \ {\rm GeV}.$$

Cao and Zhang, arXiv:1611.09337

Phenomenology of the 3-3-1 Model

Margherita Ghezzi (Universität Tübingen)

Doubly charged scalar searches

- Signature: same-sign lepton pairs
- Assumptions on the branching ratios
- Narrow width approximation

ATLAS 7 TeV:

• Eur.Phys.J. C72 (2012) 2244

CMS 7 TeV:

• Eur.Phys.J. C72 (2012) 2189

ATLAS 13 TeV:

• Eur.Phys.J. C78 (2018) no.3, 199

CMS 13 TeV:

• CMS-PAS-HIG-16-036

Doubly charged scalar searches: CMS

Search for a scalar triplet $S = \begin{pmatrix} S^+ & \sqrt{2}S^{++} \\ \sqrt{2}S^0 & -S^+ \end{pmatrix}$ with degenerate masses.

 $12.9\,{\rm fb}^{-1}$ of integrated luminosity at 13 TeV

Channels:

- Pair production with decays $S^{++}S^{--} \rightarrow \ell^+ \ell^+ \ell^- \ell^-$
- Associated production with decays $S^{\pm\pm}S^{\mp} \rightarrow \ell^{\pm}\ell^{\pm}\ell^{\mp}\nu$

CMS-PAS-HIG-16-036

Phenomenology of the 3-3-1 Model

Margherita Ghezzi (Universität Tübingen)

Doubly charged scalar searches: CMS

- $S_I^{\pm\pm}$ decaying at 100% to *ee*, $\mu\mu$, $\tau\tau$, $e\mu$, $e\tau$, $\mu\tau$;
- Benchmark points:

Benchmark Point	ее	еµ	ετ	μμ	μτ	ττ
BP1	0	0.01	0.01	0.30	0.38	0.30
BP2	1/2	0	0	1/8	1/4	1/8
BP3	1/3	0	0	1/3	0	1/3
BP4	1/6	1/6	1/6	1/6	1/6	1/6

Lower bounds on the mass of the $S_l^{\pm\pm}$ - observed (expected) 95% CL:

Benchmark	AP [GeV]	PP [GeV]	Combined [GeV]
$100\% \Phi^{\pm\pm} \rightarrow ee$	734 (720)	652 (639)	800 (785)
$100\% \Phi^{\pm\pm} \rightarrow e\mu$	750 (729)	665 (660)	820 (810)
$100\% \Phi^{\pm\pm} \rightarrow \mu\mu$	746 (774)	712 (712)	816 (843)
100% $\Phi^{\pm\pm} ightarrow \mathrm{e} au$	568 (582)	481 (543)	714 (658)
$100\% \Phi^{\pm\pm} ightarrow \mu au$	518 (613)	537 (591)	643 (708)
100% $\Phi^{\pm\pm} \rightarrow \tau \tau$	479 (483)	396 (419)	535 (544)
Benchmark 1	613 (649)	519 (548)	723 (715)
Benchmark 2	670 (671)	465 (554)	716 (723)
Benchmark 3	706 (682)	531 (562)	761 (732)
Benchmark 4	639 (639)	496 (539)	722 (704)

 $S_R^{\pm\pm}$ may have similar kinematic properties, but potentially very different production cross sections. No associate production.

CMS-PAS-HIG-16-036

Phenomenology of the 3-3-1 Model

Margherita Ghezzi (Universität Tübingen)

Doubly charged scalar searches: ATLAS

 $36.1\,\mathrm{fb}^{-1}$ of integrated luminosity at 13 TeV.

Scenarios:

• $\sum_{i,j=e,\mu} \mathcal{B}(S^{\pm\pm} \to \ell_i \ell_j) = 100\%$ • $m(S_L^{\pm\pm})$ between 770 GeV and 870 GeV @ 95% C.L. • $m(S_R^{\pm\pm})$ between 660 GeV and 760 GeV @ 95% C.L.

•
$$\mathcal{B}(S^{\pm\pm} \rightarrow \ell_i \ell_j) > 10\%$$
 (decays to τ and W are possible)
• $m(S_L^{\pm\pm})$ larger than 450 GeV @ 95% C.L.
• $m(S_R^{\pm\pm})$ larger than 320 GeV @ 95% C.L.

Eur.Phys.J. C78 (2018) no.3, 199

Outline

- 2 The 3-3-1 Model
- 3 Collider Phenomenology
- 4 Work in progress: Study of the Parameter Space
- 5 Work in progress: further directions

6 Summary

Introduction The 3-3-1 Model Collider Phenomenology Parameter Space Further Directions Summary

Physical Parameters vs. Lagrangian Parameters The Neutral Sector – Scalars

$$\mathcal{M}_{h}^{2} = \begin{pmatrix} \kappa \tan \beta v_{\chi}^{2} + 2\lambda_{1}v^{2}\cos^{2}\beta & \lambda_{12}v^{2}\cos\beta\sin\beta - \kappa v_{\chi}^{2} & v_{\chi}v(\lambda_{13}\cos\beta - \kappa\sin\beta) \\ \lambda_{12}v^{2}\cos\beta\sin\beta - \kappa v_{\chi}^{2} & \kappa\cot\beta v_{\chi}^{2} + 2\lambda_{2}v^{2}\sin^{2}\beta & v_{\chi}v(\lambda_{23}\sin\beta - \kappa\cos\beta) \\ v_{\chi}v(\lambda_{13}\cos\beta - \kappa\sin\beta) & v_{\chi}v(\lambda_{23}\sin\beta - \kappa\cos\beta) & 2\lambda_{3}v_{\chi}^{2} + \kappa v^{2}\cos\beta\sin\beta \end{pmatrix}$$

$$H = (\operatorname{Re} \rho^0, \operatorname{Re} \eta^0, \operatorname{Re} \chi^0) \quad \longmapsto \quad h = (h_1, h_2, h_3): \qquad h_i = \mathcal{R}_{ij}^{S} H_j$$

 $\mathcal{R}^{S} = \begin{pmatrix} \cos \alpha_{2} \cos \alpha_{3} & \cos \alpha_{3} \sin \alpha_{1} \sin \alpha_{2} - \cos \alpha_{1} \sin \alpha_{3} & \cos \alpha_{1} \cos \alpha_{3} \sin \alpha_{2} + \sin \alpha_{1} \sin \alpha_{3} \\ \cos \alpha_{2} \sin \alpha_{3} & \cos \alpha_{1} \cos \alpha_{3} + \sin \alpha_{1} \sin \alpha_{2} \sin \alpha_{3} & \cos \alpha_{1} \sin \alpha_{2} \sin \alpha_{3} - \cos \alpha_{3} \sin \alpha_{1} \\ -\sin \alpha_{2} & \cos \alpha_{2} \sin \alpha_{1} & \cos \alpha_{1} \cos \alpha_{2} \end{pmatrix}$

$$\hat{\mathcal{M}}_h^2 = (\mathcal{R}^S)^T \cdot \mathcal{M}_h^2 \cdot \mathcal{R}^S$$

Diagonalization conditions:

$$\begin{aligned} \hat{\mathcal{M}}_{h;1,1}^2 &= m_{h_1}^2 & \hat{\mathcal{M}}_{h;2,2}^2 &= m_{h_2}^2 & \hat{\mathcal{M}}_{h;3,3}^2 &= m_{h_3}^2 \\ \hat{\mathcal{M}}_{h;1,2}^2 &= 0 & \hat{\mathcal{M}}_{h;1,3}^2 &= 0 & \hat{\mathcal{M}}_{h;2,3}^2 &= 0 \end{aligned}$$

Phenomenology of the 3-3-1 Model

Margherita Ghezzi (Universität Tübingen)

Physical Parameters vs. Lagrangian Parameters The Neutral Sector – Pseudoscalars

$$\mathcal{A} = (\operatorname{Im} \rho^0, \operatorname{Im} \eta^0, \operatorname{Im} \chi^0) \quad \longmapsto \quad \mathrm{a} = (\mathrm{a}_{\mathrm{G}_{\mathrm{Z}}}, \, \mathrm{a}_{\mathrm{G}_{\mathrm{Z}'}}, \, \mathrm{a}_1) : \qquad \mathrm{a}_{\mathrm{i}} = \mathcal{R}_{\mathrm{ij}}^{\mathrm{P}} \mathrm{A}_{\mathrm{j}}$$

$$\mathcal{M}_{a}^{2} = \begin{pmatrix} \kappa v_{\chi}^{2} \tan \beta & \kappa v_{\chi}^{2} & \kappa v_{\chi} v \sin \beta \\ \kappa v_{\chi}^{2} & \kappa v_{\chi}^{2} \cot \beta & \kappa v_{\chi} v \cos \beta \\ \kappa v_{\chi} v \sin \beta & \kappa v_{\chi} v \cos \beta & \kappa v^{2} \cos \beta \sin \beta \end{pmatrix}$$

It follows a relation between κ and the mass of the pseudoscalar $m_{a_1}^2$:

$$m_{a_1}^2 = \kappa (v_{\chi}^2 \csc \beta \sec \beta + v^2 \cos \beta \sin \beta)$$

+ Diagonalization conditions $\implies \lambda_i(m_{h_i}, m_{a_1}, \alpha_i)$

Physical Parameters vs. Lagrangian Parameters The Charged Sector

$$H^{-} = ((\rho^{+})^{*}, \eta^{-}) \longmapsto h^{-} = (h^{-}_{G_{W}}, h^{-}_{1}): \qquad h^{-}_{i} = \mathcal{R}^{C}_{ij} H^{-}_{j}$$
$$m^{2}_{h^{\pm}_{1}} = \frac{1}{2} \zeta_{12} v^{2} + \kappa v^{2}_{\chi} \csc \beta \sec \beta \implies \zeta_{12}$$

$$H^{A} = ((\eta^{-A})^{*}, \chi^{A}) \quad \longmapsto \quad h^{A} = (h^{A}_{G_{VA}}, h^{A}_{1}): \qquad h^{A}_{i} = \mathcal{R}^{A}_{ij}H^{A}_{j}$$
$$m^{2}_{h^{\pm A}_{1}} = \frac{1}{4}(\zeta_{23} + 2\kappa\cot\beta)\left(2v^{2}_{\chi} + v^{2} - v^{2}\cos2\beta\right) \implies \qquad \zeta_{23}$$

$$\begin{aligned} H^{\mathcal{B}} &= ((\rho^{-\mathcal{B}})^*, \, \chi^{\mathcal{B}}) &\longmapsto \quad h^{\mathcal{B}} &= (h^{\mathcal{B}}_{G_{\mathcal{V}^{\mathcal{B}}}}, \, h^{\mathcal{B}}_1); : \qquad h^{\mathcal{B}}_i = \mathcal{R}^{\mathcal{B}}_{ij} H^{\mathcal{B}}_j \\ m^2_{h^{\pm \mathcal{B}}_1} &= \frac{1}{4} \left(\zeta_{13} + 2\kappa \tan \beta \right) \left(2v^2_{\chi} + v^2 - v^2 \cos 2\beta \right) &\Longrightarrow \quad \zeta_{13} \end{aligned}$$

Triviality and Perturbative Unitarity Constraints

Triviality:

• Require that the couplings are perturbative

 $\lambda_i < 4\pi$

Perturbative Unitarity:

- It is a constraint from the scattering amplitudes.
- It does not depend on β_{Qem}.
- One has to calculate the amplitudes of all the $2 \rightarrow 2$ processes;
- take the $s \to \infty$ limit;
- arrange the amplitudes in a matrix;
- project onto the J = 0 partial waves;
- diagonalize and impose $|\operatorname{Re}(\lambda_{max})| \leq \frac{1}{2}$.

Lee, Quigg, Thacker, Phys.Rev. D16 (1977) 1519 Luscher and Weisas, Phys. Lett. 212B (1988) 472

Perturbative Unitarity Constraint

Partial-wave decomposition:

$$a_J = rac{1}{32\pi} \int_{-1}^1 d\cos heta \mathcal{A}(s, heta) P_J(\cos heta)$$

 P_J are the Legendre Polynomials:

$$P_0(x) = 1$$
 $P_1(x) = x$ $P_2(x) = \frac{3}{2}x^2 - \frac{1}{2}$ etc.

The strongest constraint comes from the J = 0 partial wave:

$$a_0 = rac{1}{32\pi}\int_{-1}^1 d{
m cos} heta \mathcal{A}(s, heta)$$

Perturbative Unitarity Constraint

SM example

Calculate the 2 \rightarrow 2 amplitudes in the $s \rightarrow \infty$ limit:

 $\begin{array}{ll} W_{L}^{+}W_{L}^{-} \rightarrow W_{L}^{+}W_{L}^{-} & Z_{l}Z_{L} \rightarrow Z_{L}Z_{L} \\ HZ_{L} \rightarrow W_{L}^{+}W_{L}^{-} & Z_{L}Z_{L} \rightarrow W_{L}^{+}W_{L}^{-} \\ HZ_{L} \rightarrow HH & HH \rightarrow HH \\ HZ_{L} \rightarrow Z_{L}Z_{L} & HH \rightarrow Z_{L}Z_{L} \\ HZ_{L} \rightarrow W_{L}^{+}W_{L}^{-} & HH \rightarrow W_{L}^{+}W_{L}^{-} \end{array}$

Project them on J = 0; diagonalize the matrix:

$$t \simeq \frac{-G_F m_H^2}{4\pi\sqrt{2}} \begin{bmatrix} 1 & \frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} & 0\\ \frac{1}{\sqrt{8}} & \frac{3}{4} & \frac{1}{4} & 0\\ \frac{1}{\sqrt{8}} & \frac{1}{4} & \frac{3}{4} & 0\\ 0 & 0 & 0 & \frac{1}{\sqrt{8}} \end{bmatrix}$$

Eigenvalues:

$$\frac{-G_F m_H^2}{4\pi\sqrt{2}} \times \left(\frac{3}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$$
$$m_H^2 \le \frac{4\pi\sqrt{2}}{3G_F}$$

Lee, Quigg, Thacker, Phys.Rev. D16 (1977) 1519

Phenomenology of the 3-3-1 Model

Margherita Ghezzi (Universität Tübingen)

Limits from Higgs Measurements

Constraints from the observed Higgs boson h:

 $m_h = 125 {\rm GeV}$

Couplings with the vector bosons: $\cos \alpha_2 \times \cos \alpha_3 \ge 0.8$

The angle α_1 remains substantially free.

Constraints on the vevs:

- 2 light vevs: v_{ρ} , v_{η}
- 1 heavy vev: v_{χ}

$$v_
ho^2 + v_\eta^2 = v_{SM}^2 \equiv (246 {
m GeV})^2$$

while the heavy v_{χ} is free.

The triviality constraint: results

Look at the couplings λ_i and ζ_i in the large v_{χ} limit and require $\lambda_i, \zeta_i < 4\pi$

- From ζ_{12} we get that m_{H_0} is close to m_{H_W} : $\frac{2(m_{H_0}^2 m_{H_W}^2)}{v_{SM}^2} \le 4\pi$
- From ζ₁₃ and ζ₂₃ we only get m_{H_V}, m_{H_Y} < v_χ (m_{H_V}, m_{H_Y} almost unconstrained)
- From the λ_i we get that the splitting between m_{H_0} , m_{H_2} and m_{H_3} is small (from ratios of the form: $\frac{2(m_{H_2}^2 m_{H_3}^2)}{v_{SM}^2}$)
- The requirement cos α₂ × cos α₃ ≥ 0.8 is translated into ^{v_η}/_{v_ρ} < 0.4, or lower for more stringent constraint on α₂, α₃.

Conclusion: the heavy scalars have a compressed spectrum:

$m_i \sim 1 { m TeV}$	\Rightarrow	$\Delta m \sim 200 { m GeV}$
$m_i \sim 2 { m TeV}$	\Rightarrow	$\Delta m \sim 100 { m GeV}$
etc.		

The higher the masses, the more compressed the spectrum.

Phenomenology of the 3-3-1 Model

Triviality + perturbative unitarity: preliminary results

Phenomenology of the 3-3-1 Model

Margherita Ghezzi (Universität Tübingen)

Outline

- 2 The 3-3-1 Model
- 3 Collider Phenomenology
- 4 Work in progress: Study of the Parameter Space
- 5 Work in progress: further directions

6 Summary

Study of the Higgs Trilinear Coupling

Higgs canion: $v_{\chi} = 4$ TeV, $m_{a_1} = 2.5$ TeV,

 $v_{\chi} = 4$ TeV, $m_{a_1} = 2$ TeV

Phenomenology of the 3-3-1 Model

Margherita Ghezzi (Universität Tübingen)

Collider Simulations

- Exotic quark phenomenology
- Benchmark points for the simulations?
- Can we generalize? Simplified Models

$T_{5/3}$ pair production

Experimental searches for $pp \to T_{5/3} \bar{T}_{5/3} \to W^+ W^- t \bar{t}$ Complementary searches:

- $pp \to T_{5/3} \, \overline{T}_{5/3} \to Y^{++} Y^{--} b \overline{b}$
- $pp \rightarrow T_{5/3} \overline{T}_{5/3} \rightarrow V^+ V^- t \overline{t}$
- Doubly and singly charged heavy scalars: $Y^{\pm\pm}/V^{\pm}
 ightarrow S^{\pm\pm}/S^{\pm}$

Simulations: $T_{5/3}$ quarks

Summary

- The 331 Model is a minimal extension of the SM gauge group, that addresses the flavour problem.
- The spectrum contains BSM scalars, fermions and gauge bosons.
- We have studied the parameter space in terms of the physical parameters: masses and mixing angles.
- The triviality constraint forces the spectrum of the Higgs bosons to compressed configurations.
- The perturbative unitarity constraint does not show any specific pattern, but excludes efficiently and uniformely many points of the parameter space.
- There is a lot of room for collider studies; in particular, we are planning to study different decay modes of the $T_{5/3}$ exotic quark.