Reconstruction of photon interactions in plastic scintillators in J-PET detectors

Krzysztof Kacprzak on behalf of J-PET Collaboration

Is Quantum Theory exact? From quantum foundations to quantum applications
Frascati September 2019

Outline

- Compton scattering in plastic scintillators
- J-PET detector prototypes
- Software Framework
- Reconstruction steps
- Usage examples
- Summary

Compton scattering in plastic scintillators

- The goal is to reconstruct particle interactions in plastic scintillators
- Gamma quanta is scattered via Compton effect
- Absorbed energy is emitted via fluorescence
- Light travels like in a optical link through the scintillator

J-PET detector prototypes

Big Barrel
192 scintillators
384 vacuum tube PMs
probing on 4 thresholds

Modular Detector
24 modules x 13 scintillators
2496 SiPMs (8 per scintillator)
probing on 2 thresholds

Software Framework

- Members of the J-PET collaboration develop software project for the data reconstruction and analysis in our experiment
- Repository is maintained on GitHub, contains the set of data reconstruction procedures
- As well as other programs to perform calibrations, basic data selection for event reconstruction, analyze data from different setups

Reconstruction steps (1)

- **Trigerless DAQ** ⇒ **Time Slots** ∋ **data points** (time, edge, channel)

 Bio-Algorithms & Med-Systems, Vol. 10, No. 1, 37-40 (2014)
- Procedure iterates over data points from connected channels and matches them into signals

Reconstruction steps (2)

Procedure matching signals from the photomultipliers on the opposite sides into scintillator hits - points of interaction of the particle with the material

time difference
$$\Delta t = |t_{signalB} - t_{signalA}|$$
 interaction z-position = $\Delta t \cdot c_{eff}/2$

interaction time =
$$(t_{signalA} + t_{signalB})/2$$

Reconstruction steps (3)

SIGNALS

HITS

?ANALYSIS

EVENTS

Additional elements:

- reading the detector configuration
- noise filtering
- time synchronization of channels across the whole detector
- effective velocity of light in scintillators

The results of reconstruction procedures:

- 3-dimensional position in the detector
- interaction time
- Time-over-Threshold

Reconstruction steps (4)

Time-over-Threshold can be used as a measure of energy deposited in the scintillator by some particle

Analysis of TOT and deposited energy relation [work by S. Sharma - publication in preparation]

Examples (1)

source

Measurement description:

- Vacuum chamber was inserted into the detector
- Radioactive source Na²² of activity of 1 MBq was used,
- It was surrounded with porous material XAD4 enhancing rate of positronium creation
- Time slot parameter: 300 μs
- Measurement lasted 22 days 3590 files were written on disk

Reconstruction performance:

- 40 cores of 2.7 GHz were utilized
- Average execution time for one file: 18 minutes
- Elapsed time: 28 hours

Examples (2)

Examples of data points matched into signals - event display software

Examples (3)

Examples of data points matched into signals - event display software

Examples (4)

Examples of reconstructed hits - multiplicity in time slots and 3D position

Examples (5)

TOT spectrum has a structure of Compton edges. Left is a TOT spectrum of all the hits reconstructed in the measurement (one file). Right is a simulation of deposited energy in a scintillator by photons of different energies (derived from Eur. Phys. J. C (2016) 76:445)

Summary

- Data analysis Framework for J-PET experiment is a flexible environment for offline data reconstruction
- Series of procedures within the J-PET Framework reconstructs interactions of photons in plastic scintillators from raw binary data to the level of data structures with physical interpretation.
- Our collaborators are using Framework for data analysis from measurements with Big Barrel Detector and after slight modifications the procedures can be used with the data from next prototypes.
- Results of reconstruction procedures is a starting point for variety of investigations in physics analyses, medical imaging, detector calibration applications that are based on physical phenomena occurring on a quantum level.

Thank you for your attention

Backup slides (1 - matching data points)

Backup slides (2) - noise filtering

Backup slides (3) - z position reconstruction

Backup slides (4) - time synchronization

M. Skurzok, M. Silarski et al. Acta Phys. Polon. A 132, no. 5, 1641 (2017)