Feasibility study of a Positronium decays in view of Charge Symmetry violation using J-PET detector

Jyoti Chhokar
On Behalf of the J-PET Collaboration

Date: 26-09-2019 Is Quantum theory is exact?

Overview

Discrete Symmetries in physics
(6) Motivation
© Precision test in C-symmetry and their experimental method
(1)Approach towards C- symmetry using J-PET detector and pre-selection of data

Simulation and Experimental results of o-Ps
Simulation of p-Ps->3 γ

Symmetries

Noether's theorem: For every symmetry in Physics there is a corresponding conservation law.

Discrete symmetries:

1) Parity transformation:

$$
P(x)=-x
$$

2) Charge conjugation :
particle \leftrightarrow antiparticle
3) Time reversal:

$$
\dagger \rightarrow-\dagger
$$

Positronium (Ps)-- lightest Leptonic system

Due to Charge Conjugation

- With the C -violating weak interaction:

Positronium gain access to new photonic decay modes, the simplest one ${ }^{1} \mathrm{~S}_{0}->3 \mathrm{Y}$
S. Berko and H. N. Pendleton, Ann. Rev. Nucl. Part. Sci. 30, (543-81) (1980) 4

Precision test in C-forbidden decay

Millls and Berko -- 1967 -- First experiment to test C-symmetry

Using Bose Statistics assumption:
Seperated the C-forbidden $3 \boldsymbol{\gamma}$ decay of p Ps from the allowed $3 \boldsymbol{\gamma}$ decay of o-Ps state by studying angular distribution of 3 photons.
Branching Ratio (R=3 $\gamma / 2 \gamma$) ~ 2.8 * $10^{-6}(68 \%$ C.L)

For calculation of R used only three combination of angles:

1. Symmetric configuration $\left(120^{\circ}, 120^{\circ}, 120^{\circ}\right)$
2. Other set of angle $\left(60^{\circ}, 150^{\circ}, 150^{\circ}\right)$
3. $\left(90^{\circ}, 120^{\circ}, 150^{\circ}\right)$
A. P. Mills and S. Berko, Phys. Rev. Lett. 18, 420 (1967)

Angular distribution of 3 photons for o-Ps and p-Ps

Fig. represents the angle between the 3 annihilation photons. Left side shows the angular distribution of these 3 photons (top) as decaying from o-Ps and (bottom) decaying from p-Ps, And the calculations were based on the decay rate
A. P. Mills and S. Berko, Phys. Rev. Lett. 18, $420(1967)^{6}$

J-PET Detector

Fig. represents the front view of J PET detector which is build out of 192 plastic scintillators. Also
 represents the angles between three photon which are annihilating from the ${ }^{22} \mathrm{Na}$ source placed in center of detector.

Preselection of the Signal: o-Ps-> $3 \boldsymbol{\gamma}$

Signal Event $--\boldsymbol{Y}_{\mathbf{1}}+\boldsymbol{Y}_{\mathbf{2}}+\boldsymbol{Y}_{\mathbf{3}}+\boldsymbol{Y}_{\text {dex }}$ 50 cm

Active scintillator region Single Module of the J-PET detector Active scintillating region $=\mid \mathbf{2 3 . 0} \mathbf{0} \mathbf{c m}$

Fig. representation of the interaction positions on the Zaxis of the photon interacting in the detector geometry.

Time Over Threshold as a measure of Energy Deposition

Fig. represents the signal (purple) from the two PMT fixed each side of scintillator, and signal from both of the PMT probed at four threshold. Right spectra shows the TOT distribution in which there is 2 Compton edges one for 511 kev and another for 1274 keV photons.

Selection of o-Ps using three angle of interacting Photons

o-Ps -> 3g

$\theta_{12}+\theta_{23}>\mathbf{1 8 0}^{\circ}$

$\left(\boldsymbol{\Theta}_{23}+\Theta_{12}\right)$ [deg]

Fig. represents the distribution of the sum $\left(\theta_{12}+\theta_{23}\right)$ and difference $\left(\theta_{12}-\theta_{23}\right)$ of the two smallest angles between the 3γ of o-Ps decay (left) before cut (right) after cut

Angular Spectra for o-Ps $->3 \mathrm{~g}$

3D Dalitz's Angular Plot for p-Ps -> 3g -- Simulated Data

Lifetime of Positronium [ns]

Conclusions

\checkmark First Experimental Angular Distribution spectra for the o-Ps-> 3γ using J-PET detector.
\checkmark Angular Distribution spectra for the p-Ps->3 γ obtained using Monte Carlo Simulation.
\checkmark And p-Ps and o-Ps will be separated using lifetime spectra.

Backup Slides!

A feasibility study of ortho-positronium decays measurement with the J-PET scanner based on plastic scintillators

Eur. Phys. J. C (2016) 76:445 DOI 10.1140/epjc/s10052-016-429

Trilateration-based reconstruction of ortho-positronium decays into three photons with the J-PET detector Nuclear Inst. and Methods in Physics Research A819 (2016) 54-59

