J-PET Monte Carlo simulation with the Geant4 package

Daria Kisielewska on behalf of the J-PET Collaboration

25 September 2019 Frascati

Monte Carlo simulation is a support for...

- ... creating the calibration and reconstruction methods
 - additional reconstruction method of radiopharmaceutic position
 A. Gajos, et al Nucl. Instrum. Meth. A819, 54 (2016)
- ... searching for the physics beyond the Standard Model:
 - discrete symmetries violation
 - W. Bernreuther, U. Low, J. P. Ma, O. Nachtmann, Z Phys. C, 41(1), 143 (1988)
 - extra dimensions
 - S.L. Dubovsky, V.A. Rubakov, P.G. Tinyakov, Phys. Rev. D 62 (105011)
 - dark matter
 - P. Crivelli, A. Belov, U. Gendotti, S. Gninenko and A. Rubbia, JINST 5, P08001 (2010)
 - a new light vector gauge boson
 S. N. Gninenko, N. V. Krasnikov, A. Rubbia, Modern Phys. Lett. A 17, 1713 (2002)
- ... creating the diagnostic methods in medicine
 - morphometric imaging

P.Moskal et al., Patent Application: PCT/PL2015/050038

Tools available on the market:

- Geant (general purpose)
- Gate (PET and SPET)
- Fred (Ion beam therapy)
- EGSnrc (it models the propagation of γ , e^- and e^+ through matter)
- many more ...

J-PET detector

For details see a talk by P. Moskal on Monday

Event types

Material	No Ps formed ¹	Water ¹	IC3100 ²	XAD-4 ²
$f_{3\gamma} = \sigma_{3\gamma}/\sigma_{2\gamma}$	0.27%	0.52%	16.9%	28.9 %

¹ K. Merkurio et al., Phys. Med. Biol. **51**, N323 (2006)

² B. Jasińska et al., Acta Phys. Polon. B **47**, 453 (2016)

Program architecture and simulated geometry

- code available at GitHub https://github.com/JPETTomography/ J-PET-geant4.git
- required packages: geant.10.4, root6, cadmesh, cmake
- physics list: G4EmLivermorePolarizedPhysics (Livermore physics models with polarized photon models)
- the Monte Carlo simulations account for:
 - angular and energy distributions of gamma quanta originating from direct or ortho-positronium annihilation,
 - Compton interactions of emitted gamma quanta in the detector built from plastic scintillators.
 - determination of gamma quanta hit-position and hit-time in the detector with experimentally determined resolutions,
 - multiple scattering and accidental coincidences,

Visualization of simulated detector

Event classification

Goal: distinguish between following categories:

- 2γ
- \circ 3 γ
- lacksquare prompt γ
- phantom scatterings
- detector scatterings

Machine Learning classifier

- MC for run6
 - large annihilation chamber
 - prompt from the center
- variables for each hit:
 - deposited energy,
 - registration time
 - position coordinates
- used Long Short Term Memory (LSTM) layer
- the series of hits is fed into network

Learning process

- loss
 - this score is minimized and a perfect cross-entropy value is 0
- accuracy
 - to judge the performance of model (correctly classified events all events

Classifiers - run6 (3 γ : 0.3%)

- 800000

- 700000

- 600000

- 500000

-400000

- 300000

- 200000

- 100000

- loss 29.1 %
 - this score is minimized and a perfect cross-entropy value is 0
- accuracy 90.6%
 - ullet to judge the performance of model ($\frac{\text{correctly classified events}}{\text{all events}}$)

Classifiers - run6 (3 γ : 40%)

- loss 37.2%
 - this score is minimized and a perfect cross-entropy value is 0
- accuracy 84.3%
 - ullet to judge the performance of model ($\frac{\text{correctly classified events}}{\text{all events}}$)

Summary

- J-PET-Geant4 is a Monte Carlo simulation program designed for the J-PET detector created in Geant4 toolkit.
- Software is maintained within public repositories on GitHub: https://github.com/JPETTomography
- Many contributing members

Thank you for your attention

Back to back events

- simulated two 511 keV back to back gamma quanta
- ullet \leftarrow emitted gamma quanta interact via Compton scattering
- ◆ Sensitivity map in x y plane in the central part of the detector. Figure is made in a transverse view of the detector with 0.5 mm × 0.5 mm bin size.

Positron Emission Tomog- raphy scanner using computational accelerators PhD thesis (Jagiellonian University, 2016).

o-Ps $\rightarrow 3\gamma$ annihilation

- simulated two 511 keV back to back gamma quanta
- ← emitted gamma quanta interact via Compton scattering
- ◆ Sensitivity map in x y plane in the central part of the detector. Figure is made in a transverse view of the detector with 0.5 mm × 0.5 mm bin size.

Studies of discrete symmetries

Operator	С	Р	Т	СР	CPT
$\vec{S} \cdot \vec{k}_1 \times \vec{k}_2$	+	+		+	_

 $C_{CPT} = 0.0026 \pm 0.0031$ (for $\vec{S} \cdot \vec{k}_1 \times \vec{k}_2$) (P.A. Vetter et al., Phys. Rev. Lett. 91 (2003) 263401)

SM:
$$10^{-9}-10^{-10}$$
 effects of final state interaction (W. Bernreuther et al., Z. Phys. C 41 (1988) 143)

Observable:
$$A = \frac{N(\alpha) - N(\alpha + 180)}{N(\alpha) + N(\alpha + 180)}$$

Application example - \mathcal{CPT} violation parameter $\boldsymbol{\xi}$

(P.A. Vetter et al., Phys. Rev. Lett. 91 (2003) 263401) \Leftarrow Dependency between number of reconstructed o-Ps \to 3 γ events and the amplitude of \mbox{CPT} violating asymmetry uncertainty (red line). Plot is made assuming detection parameters as in Gammashpere detector. Result obtained

• $C_{CPT} = 0.0026 \pm 0.0031$ (for $\vec{S} \cdot \vec{k_1} \times \vec{k_2}$)

• $R_{o-Ps \to 3\gamma} = A \cdot f_{o-Ps \to 3\gamma} \cdot \epsilon_{det}(th) \cdot \epsilon_{ana}$

by Vetter and Freedman is denoted by

- A source activity • $f_{o-Ps \to 3\gamma}$ - fraction of o-Ps $\to 3\gamma$
- annihilation
- $\epsilon_{det}(th)$ detection efficiency
- ullet $\epsilon_{\it ana}$ analysis efficiency
- XAD-4 (10MBq, th=50keV): $R_{o-Ps\to 3\gamma} = 25 \text{ events/s}$ $\approx 1.5 \times 10^7 \text{ events/week}$

black square.

 around 1.5 year of measurement is required to improve the previous result by an order of magnitude

Integration with J-PET Analysis Framework

- J-PET Framework is the analysis environment written in C++ for the low- and high-level data processing.
- provides adjusting of Geant MC output in framework structures (hit level)
- user can process MC in the same manner as collected data