Vector-like quarks at the LHC finite width, NLO and exotic decays

Luca Panizzi

Uppsala University

UPPSALA UNIVERSITET

SM and new fermions

There can be SM partners (t', e') or fermions with exotic charges $(X_{5/3}, E^{--}...)$

SM and new fermions

They can mix with SM fermions through Yukawa couplings

$$Q' \longrightarrow \longrightarrow q_i$$
 $L' \longrightarrow \longrightarrow l_i$

Dangerous FCNCs —> strong bounds on mixing parameters

There can be SM partners (t', e') or fermions with exotic charges $(X_{5/3}, E^{--}...)$

A special case

They must be odd under the Z_2 parity of DM \longrightarrow they **cannot** mix with SM states

SM and new fermions

They can mix with SM fermions through Yukawa couplings

$$Q' \longrightarrow \longrightarrow q_i$$
 $L' \longrightarrow \longrightarrow l_i$

Dangerous FCNCs —> strong bounds on mixing parameters

There can be SM partners (t', e') or fermions with exotic charges $(X_{5/3}, E^{--}...)$

A special case

Only SM partners are allowed (up to 4-dim operators)

They must be odd under the Z_2 parity of DM \longrightarrow they **cannot** mix with SM states

If new fermions exist what can they be?

Luca Panizzi

New fermions: the chiral hypothesis

aka adding a fourth chiral family to the SM

$$\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix} \begin{pmatrix} t' \\ b' \end{pmatrix}$$

$$\begin{pmatrix} \nu_e \\ e \end{pmatrix} \begin{pmatrix} \nu_\mu \\ \mu \end{pmatrix} \begin{pmatrix} \nu_\tau \\ \tau \end{pmatrix} \begin{pmatrix} \nu' \\ l' \end{pmatrix}$$

both quarks and leptons for anomaly cancellation $Tr[Q] = 3(\frac{2}{3} - \frac{1}{3}) + (0 - 1) = 0$

Modifications to observed processes

New fermions: the chiral hypothesis

aka adding a fourth chiral family to the SM

A chiral 4th generation is excluded at 4.8σ (or 5.3σ including $H \rightarrow b\bar{b}$ at Tevatron)

in the context of a simplified model where only the new family is added to the SM

Let's go for vector-like fermions

Luca Panizzi

Vector-like fermions

A fermion is **vector-like** under a gauge group if its left-handed and right-handed chiralities transform in the **same way**

e.g. SM quarks are vector-like under $SU(3)_c$ but are chiral under $SU(2) \times U(1)_Y$

Vector-like fermions

A fermion is **vector-like** under a gauge group if its left-handed and right-handed chiralities transform in the **same way**

e.g. SM quarks are vector-like under $SU(3)_c$ but are chiral under $SU(2) \times U(1)_Y$

Why "vector-like"?

$$\mathcal{L}_W = g/\sqrt{2} \, j^{\mu\pm} W^{\pm}_{\mu}$$

 $\begin{array}{l} \mbox{SM Chiral fermions} \\ j^{\mu}_{L}=\bar{f}_{L}\gamma^{\mu}f'_{L} \quad j^{\mu}_{R}=0 \\ j^{\mu}=j^{\mu}_{L}+j^{\mu}_{R}=\bar{f}\gamma^{\mu}(1-\gamma^{5})f' \\ \mbox{V-A structure} \end{array}$

Charged current Lagrangian

 $\begin{array}{l} \text{Vector-like fermions} \\ j_L^{\mu} = \bar{f}_L \gamma^{\mu} f_L' \qquad j_R^{\mu} = \bar{f}_R \gamma^{\mu} f_R' \\ j^{\mu} = j_L^{\mu} + j_R^{\mu} = \bar{f} \gamma^{\mu} f' \end{array}$

V structure

Vector-like fermions

A fermion is **vector-like** under a gauge group if its left-handed and right-handed chiralities transform in the **same way**

e.g. SM quarks are vector-like under $SU(3)_c$ but are chiral under $SU(2) \times U(1)_Y$

Why "vector-like"?

$$\mathcal{L}_W = g/\sqrt{2} \, j^{\mu\pm} W^{\pm}_{\mu}$$

 $\begin{array}{l} \mbox{SM Chiral fermions} \\ j^{\mu}_{L}=\bar{f}_{L}\gamma^{\mu}f'_{L} \quad j^{\mu}_{R}=0 \\ j^{\mu}=j^{\mu}_{L}+j^{\mu}_{R}=\bar{f}\gamma^{\mu}(1-\gamma^{5})f' \\ \mbox{V-A structure} \end{array}$

Charged current Lagrangian

Vector-like fermions $j_L^{\mu} = \bar{f}_L \gamma^{\mu} f'_L \qquad j_R^{\mu} = \bar{f}_R \gamma^{\mu} f'_R$ $j^{\mu} = j_L^{\mu} + j_R^{\mu} = \bar{f} \gamma^{\mu} f'$ V structure

Peculiar Properties

 $\mathcal{L}_M = -M\bar{\psi}\psi$ Gauge invariant mass term without the Higgs No need to add both quarks and leptons: axial anomalies are automatically absent

Vector-like quarks in many models of New Physics

- Warped or universal extra-dimensions: KK excitations of bulk fields
- Composite Higgs models: excited resonances of the bound states which form SM particles
- Little Higgs models: partners of SM fermions in larger group representations which ensure the cancellation of divergent loops
- Non-minimal SUSY extensions: increase corrections to Higgs mass without affecting EWPT

Model independent approach

Bounds above the TeV, but usually under specific assumptions:

- SM extended with only one representation of VLQs
- Mixing only with third generation of SM quarks
- Pair production or Single production at LO
- Narrow width approximation
- Interacting only with SM states

More exploration is definitely needed!

Luca Panizzi

Bounds above the TeV, but usually under specific assumptions:

- SM extended with only one representation of VLQs
- Mixing only with third generation of SM quarks
- Pair production or Single production at LO
 First two parts of the talk
- Narrow width approximation
- Interacting only with SM states

More exploration is definitely needed!

Luca Panizzi

Bounds above the TeV, but usually under specific assumptions:

- SM extended with only one representation of VLQs
- Mixing only with third generation of SM quarks

More exploration is definitely needed!

Luca Panizzi

Single production of VLQs with finite width

interacting only with SM states

based on

A. Carvalho, S. Moretti, D. O'Brien, LP and H. Prager Single production of vectorlike quarks with large width at the Large Hadron Collider Phys. Rev. D98 (2018) no.1, 015029

and

CMS Collaboration

Search for single production of a vector-like T quark decaying to a Z boson and a top quark in proton-proton collisions at \sqrt{s} = 13 TeV Phys.Lett. B781 (2018) 574-600

> Search for single production of vector-like quarks decaying to a b quark and a Higgs boson JHEP 1806 (2018) 031

Including more topologies

If the width of the VLQ is large with respect to its mass:

- Off-shell effects are not negligible anymore
- Subdominant topologies in the Narrow Width Approximation may become important
- Outside the NWA all topologies leading to the same final state must anyway be taken into account for gauge invariance
- Need to redefine the signal to take into account interference effects

Luca Panizzi

How large the width can be

To obtain a large width:

Increase couplings

- ---- non-minimal extensions which allow to escape bounds while enlarging couplings

Increase number of decay channels — new physics, non-minimal extension

Simplified models with large couplings:

(2017) no.1, 015006.

Simplified models with large couplings already excluded by other observables New physics has to be invoked

Luca Panizzi

Parametrisation for large width regime

in the narrow-width approximation (NWA)

 $\sigma(C_1, C_2, m_{\rm Q}, \Gamma_Q) = \sigma_P(C_1, m_{\rm Q}) BR_{Q \rightarrow \text{decay channel}} = C_1^2 \hat{\sigma}_{NW\!A}(m_{\rm Q}) BR_{Q \rightarrow \text{decay channel}}$

Parametrisation for large width regime

in the narrow-width approximation (NWA)

 $\sigma(C_1, C_2, m_{\rm Q}, \Gamma_Q) = \sigma_P(C_1, m_{\rm Q}) BR_{Q \rightarrow \text{decay channel}} = C_1^2 \hat{\sigma}_{NW\!A}(m_{\rm Q}) BR_{Q \rightarrow \text{decay channel}}$

in the finite width regime (FW) and assuming negligible interference contributions

$$\sigma(C_1, C_2, m_{\mathbf{Q}}, \Gamma_{\mathbf{Q}}) = C_1^2 C_2^2 \hat{\sigma}(m_{\mathbf{Q}}, \Gamma_{\mathbf{Q}})$$

C₁ and C₂ couplings: partial widths and rescaling of cross-section

Mass and total width: kinematics of the process

Consistency relation:
$$\Gamma_Q^{\text{partial}}(C_1) + \Gamma_Q^{\text{partial}}(C_2) \leq \Gamma_Q$$

Interference

Irreducible background

Signal

$\bar{b} \underbrace{\overline{W^{+}}}_{t} \bar{t} \\ b \underbrace{\overline{W^{+}}}_{t} w_{W^{+}} b \underbrace{\overline{b}}_{t} \underbrace{\overline{U}}_{t} \bar{t} \\ b \underbrace{\overline{U}}_{t} b \underbrace{\overline{U}}$

signal with itself

$$\sigma_S = C_2^2 \, \hat{\sigma}_S(C_1 \dots, M_Q, \Gamma_Q, \chi_Q)$$

 χ_O is the dominant chirality of the VLQ

signal with irreducible background

$$\sigma_{SB_{\mathrm{irr}}}^{\mathrm{int}} = C_2 \ \hat{\sigma}_{SB_{\mathrm{irr}}}^{\mathrm{int}} (C_{1...}, M_{\mathcal{Q}}, \Gamma_{\mathcal{Q}}, \chi_{\mathcal{Q}})$$

Interference

Irreducible background

Signal

signal with itself

$$\sigma_S = C_2^2 \, \hat{\sigma}_S(C_1 \dots, M_Q, \Gamma_Q, \chi_Q)$$

 χ_{O} is the dominant chirality of the VLQ

signal with irreducible background $\sigma_{SB_{irr}}^{int} = C_2 \ \hat{\sigma}_{SB_{irr}}^{int} (C_{1...}, M_Q, \Gamma_Q, \chi_Q)$

Model-dependency is (almost) unavoidable

Interference

Irreducible background

signal with itself

$$\sigma_S = C_2^2 \, \hat{\sigma}_S(C_1 \dots, M_Q, \Gamma_Q, \chi_Q)$$

 χ_{O} is the dominant chirality of the VLQ

signal with irreducible background $\sigma_{SB_{irr}}^{int} = C_2 \ \hat{\sigma}_{SB_{irr}}^{int} (C_{1...}, M_Q, \Gamma_Q, \chi_Q)$

Model-dependency is (almost) unavoidable

If signal topologies always involve the same two couplings

 $\sigma_{SB_{\rm irr}}^{\rm int} = C_1 C_2 \hat{\sigma}_{SB_{\rm irr}}^{\rm int} (M_Q, \Gamma_Q, \chi_Q) \quad \text{ and same procedure as before}$

In general \rightarrow fiducial cross-section

$$S + B = L(\sigma_S \epsilon_S + \sigma_{SB_{irr}}^{int} \epsilon_{SB_{irr}}^{int}) + B_{irr+red} \equiv L\sigma_{eff} + B \quad \text{with} \quad \sigma_{eff} = C_2^2 \ \hat{\sigma}_S \ \epsilon_S + C_2 \ \hat{\sigma}_{SB_{irr}}^{int} \epsilon_{SB_{irr}}^{int}$$

Luca Panizzi

Strategy to generate the signal

1) Fix M_Q and Γ_Q/M_Q (with small enough Q couplings for consistency)

Strategy to generate the signal

- 1) Fix M_Q and Γ_Q/M_Q (with small enough Q couplings for consistency)
- 2) Simulate $PP \rightarrow SM$ final state imposing the propagation of the VLQ, not its resonance

 we provide the Feynikales model files as well as the UFO II we indicate reference paper with the documentation on the vehicitation figures generated in the framework of each model 	brary to be us model, toget del are provide	ed with MadGraphS_aMCBNLO, her with the name of the contact person, d, so that any user could try to reproduce the	m to verify their sets	P	
silable models					
Description	Contact	Reference	FeynRules model	UPO libraries	Validation material
SN SF (more details)	C. Degrande		SN.fr	SMSF_NL0.tax.gz	
Dark matter simplified models (more details)	K. Mawatari	○*arXiv:1508.00564 , ○*arXiv: 1508.05327 , ○*arXiv: 1509.05785		DMsimp_UP0.2.8p	
Dark Hatter Gauge invariant simplified model (scalar s-channel mediator) (more details)	G. Busoni	Parkiv:1612.03475 , Parkiv: 1710.10764 ,			
Effective LR symmetric model (more details)	R. Rulz	C+arxiv:1610.09985	effLRSM.fr	ETURSH UFO	
6M (more details)	A. Peterson	C+arXiv:1512.01243		GM_NLO UF0	
Heavy Neutrino (more details)	R. Ruiz	C* arXiv:1602.05957	heavyN.fr	HeavyN NLO UFO	
Higgs characterisation (more details)	K. Mawatari	○ arXiv:1311.1829 , ○ arXiv:1407.5389 , ○ arXiv: 1504.00511		HC_NLO_X0_UF0.30	
Inclusive soluon pair production	B. Puks	11 arXiv:1412.5509	agkuons.fr	agluons_ufo.tgz	splaces_validation.pdf ; splaces_validation_rool
Lineshope of pp -> A(H) -> t ther (including interference) (more details)	D.B. Franzosi	19 http://anxiv.org/abs/1707.06760		Atttbar NLD UPD	
Spin-2 (more details)	C. Degrande	http://anev.org/abs/1605.09399	on_s_spin2.fr	SPISPINZ NLO UFO	
Stop pair >> t ther + missing energy	B. Puks		stop_ttmet.fr	stop_thmet_ufo.tgz	stop_ttmet_validation.pdf ; stop_ttmet_validation_root.tgz
SUSY-QCD	B. Puks	erXiv:1510.00391		susyqcd_ufo.tgz	All figures available from the anxiv
Two-Higgs-Doublet Model (more details)	C. Degrande	** arXiv:1405.3030	-	2HDM_NLO	-
Vector like quarks	B. Puks	** arXiv:1610.04622	VLQ_V3.fr	UPO in the STNS, UPO in the 4FNS, event peneration scripts, coupling calculator in the LO convertions	All figures available from the arxiv
W/Z' model (more details)	Puka .	er%tv:1701.03263	sfrimeNLO./r	vFrimeNLO UFO	~
NTGC (more details)	C. Degrande	3HEP 1402 (2014) 101	NTGC.fr	NTGC UPD at NLD	
GGG_EFT_up_to_4point_loops (more details) (requires	V. Hirschi	Parxiv:1805.04995	666.fr	GGG_BTT_up_to_4peint_loops UFO	Analytic amplitude and cross-sections in the corresponding publication

VLQ couplings have a dedicated coupling order "VLQ"

Single T \rightarrow Wb final state with propagation of T: "generate p p > j b w+ / bp x y VLQ==2"

Strategy to generate the signal

- 1) Fix M_Q and Γ_Q/M_Q (with small enough Q couplings for consistency)
- 2) Simulate $PP \rightarrow SM$ final state imposing the **propagation** of the VLQ, not its resonance

 we provide the Feynikales model files as well as the UFO II we indicate reference paper with the documentation on the vehicitation figures generated in the framework of each model 	brary to be us model, toget del are provide	ed with MadGraphS_aMCBNLO, her with the name of the contact person, d, so that any user could try to reproduce the	m to verify their sets	P	
silable models					
Description	Contact	Reference	FeynRules model	UPO libraries	Validation material
SN SF (more details)	C. Degrande		SN.fr	SMSF_NL0.tax.gz	
Dark matter simplified models (more details)	K. Mawatari	○*arXiv:1508.00564 , ○*arXiv: 1508.05327 , ○*arXiv: 1509.05785		DMsimp_UP0.2.8p	
Dark Hatter Gauge invariant simplified model (scalar s-channel mediator) (more details)	G. Busoni	Parkiv:1612.03475 , Parkiv: 1710.10764 ,			
Effective LR symmetric model (more details)	R. Rulz	C+arxiv:1610.09985	effLRSM.fr	ETURSH UFO	
6M (more details)	A. Peterson	C+arXiv:1512.01243		GM_NLO UF0	
Heavy Neutrino (more details)	R. Ruiz	C* arXiv:1602.05957	heavyN.fr	HeavyN NLO UFO	
Higgs characterisation (more details)	K. Mawatari	○ arXiv:1311.1829 , ○ arXiv:1407.5389 , ○ arXiv: 1504.00511		HC_NLO_X0_UF0.30	
Inclusive soluon pair production	B. Puks	11 arXiv:1412.5509	agkuons.fr	agluons_ufo.tgz	splaces_validation.pdf ; splaces_validation_rool
Lineshope of pp -> A(H) -> t ther (including interference) (more details)	D.B. Franzosi	19 http://anxiv.org/abs/1707.06760		Atttbar NLD UPD	
Spin-2 (more details)	C. Degrande	http://anev.org/abs/1605.09399	on_s_spin2.fr	SPISPINZ NLO UFO	
Stop pair >> t ther + missing energy	B. Puks		stop_ttmet.fr	stop_thmet_ufo.tgz	stop_ttmet_validation.pdf ; stop_ttmet_validation_root.tgz
SUSY-QCD	B. Puks	erXiv:1510.00391		susyqcd_ufo.tgz	All figures available from the anxiv
Two-Higgs-Doublet Model (more details)	C. Degrande	** arXiv:1405.3030	-	2HDM_NLO	-
Vector like quarks	B. Puks	** arXiv:1610.04622	VLQ_V3.fr	UPO in the STNS, UPO in the 4FNS, event peneration scripts, coupling calculator in the LO convertions	All figures available from the arxiv
W/Z' model (more details)	Puka .	er%/v:1701.03263	sfrimeNLO./r	vFrimeNLO UFO	~
NTGC (more details)	C. Degrande	3HEP 1402 (2014) 101	NTGC.fr	NTGC UPD at NLD	
GGG_EFT_up_to_4point_loops (more details) (requires	V. Hirschi	Parxiv:1805.04995	666.fr	GGG_BTT_up_to_4peint_loops UFO	Analytic amplitude and cross-sections in the corresponding publication

VLQ couplings have a dedicated coupling order "VLQ"

Single T \rightarrow Wb final state with propagation of T: "generate p p > j b w+ / bp x y VLQ==2"

3) Scan over M_Q and Γ_Q/M_Q to obtain the signal **kinematics** and experimental **efficiencies** and obtain the **upper limits** on the cross-section

Presentation of the results (1)

Reduced cross-section table $(\hat{\sigma})$

	Mass [TeV]	$\sigma_{FW}(\sigma)$ for pp \rightarrow Tbq \rightarrow tZbq [pb]			$\tilde{\sigma}_{FW}(\sigma)$ for pp \rightarrow Ttq \rightarrow tZtq [pb]		
		10%	20%	30%	10%	20%	30%
	0.8	226 (0.675)	108 (0.650)	70 (0.631)	19 (0.144)	9.3 (0.139)	6.0 (0.135)
	1.0	183 (0.314)	87 (0.299)	55 (0.284)	17 (0.075)	7.9 (0.072)	5.0 (0.069)
	1.2	145 (0.158)	68 (0.149)	43 (0.141)	14 (0.042)	6.4 (0.039)	4.1 (0.037)
	1.4	112 (0.084)	52 (0.079)	33 (0.074)	11 (0.024)	5.0 (0.022)	3.2 (0.021)
	1.6	85 (0.047)	39 (0.043)	29 (0.041)	8.2 (0.014)	3.8 (0.013)	2.4 (0.012)

Presentation of the results (3)

Providing limits in the *M* vs Γ/M plane allows for reinterpretation in a wide range of scenarios

Finite width and kinematics

 M_T = 1200 GeV, Γ_T/M_T = 1% and 30%, and imposing muonic decay of W

Finite width and kinematics

 M_T = 1200 GeV, Γ_T/M_T = 1% and 30%, and imposing muonic decay of W

Kinematical distributions can be sizably different in the finite width regime what happens at NLO?

Luca Panizzi

Single production of VLQs at NLO

interacting only with SM states

based on

G. Cacciapaglia, A. Carvalho, A. Deandrea, T. Flacke, B. Fuks, D. Majumder, LP and and H.S. Shao Next-to-leading-order predictions for single vector-like quark production at the LHC Phys. Lett. B 793 (2019) 206

NLO predictions in the NWA

Total rates

- Reduced uncertainties for both 4FS and 5FS
- For 4FS NLO $\sigma_{\rm NLO}$ is larger than $\sigma_{\rm LO}$ for $M_Q \lesssim 1$ TeV, then opposite behaviour. K-factor from ~0.9 to ~1.1
 - \longrightarrow Impact of logarithms $\log Q^2/m_h^2$
- For 5FS $\sigma_{\rm NLO}$ is always smaller than $\sigma_{\rm LO}$. \rightarrow 5FS features a more stable K-factor \sim 0.9
- Compatibility between schemes improved at NLO at low masses.

NLO predictions in the NWA

Distributions

 M_T = 1200 GeV and imposing muonic decay of W

NLO corrections can significantly impact shapes

NLO predictions in the NWA

Distributions

 M_T = 1200 GeV and imposing muonic decay of W

- The light jet is important for selection criteria
- The differential K-factor is not constant
- Agreement between 4FS and 5FS is improved at NLO
- The jet tends to be more forward at NLO

Luca Panizzi

FW@LO vs NWA@NLO

What happens at NLO if the VLQ has large width?

Exotic decays of VLQs

work in progress through

Non-SM VLQ decays

Extension of the scalar sector of the SM is theoretically justified:

- Supersymmetry additional Higgs doublets
- Composite Higgs additional scalars (neutral and charged)

...

Different decay channels to explore

 $\begin{array}{cccc} T \rightarrow S^0 t & T \rightarrow S^+ b & B \rightarrow S^0 b & B \rightarrow S^- t \\ X_{5/3} \rightarrow S^+ t & X_{5/3} \rightarrow S^{++} b & Y_{-4/3} \rightarrow S^- b & Y_{-4/3} \rightarrow S^{--} t \end{array}$
Non-SM VLQ decays

Extension of the scalar sector of the SM is theoretically justified:

- Supersymmetry additional Higgs doublets
- Composite Higgs additional scalars (neutral and charged)

...

Different decay channels to explore

 $\begin{array}{cccc} T \rightarrow S^0 t & T \rightarrow S^+ b & B \rightarrow S^0 b & B \rightarrow S^- t \\ X_{5/3} \rightarrow S^+ t & X_{5/3} \rightarrow S^{++} b & Y_{-4/3} \rightarrow S^- b & Y_{-4/3} \rightarrow S^{--} t \end{array}$

Example with non-minimal Higgs sector: VLQ+2HDM extension of the SM

- 7 possible VLQ representations
 - \rightarrow 2 singlets: T and B
 - \rightarrow 3 doublets: (X T), (T B) and (B Y)
 - \rightarrow 2 triplets: (X T B) and (T B Y)
- 2 Higgs doublets: 3 neutral states $(h^0, H^0 \text{ and } A^0)$ and 1 charged (h^+)

Non-SM VLQ decays

Extension of the scalar sector of the SM is theoretically justified:

- Supersymmetry additional Higgs doublets
- Composite Higgs additional scalars (neutral and charged)

...

Different decay channels to explore

 $T \to S^0 t \qquad T \to S^+ b \qquad B \to S^0 b \qquad B \to S^- t$ $X_{5/3} \to S^+ t \qquad X_{5/3} \to S^{++} b \qquad Y_{-4/3} \to S^- b \qquad Y_{-4/3} \to S^{--} t$

Example with non-minimal Higgs sector: VLQ+2HDM extension of the SM

- 7 possible VLQ representations
 - \rightarrow 2 singlets: T and B
 - \rightarrow 3 doublets: (X T), (T B) and (B Y)
 - \rightarrow 2 triplets: (X T B) and (T B Y)

2 Higgs doublets: 3 neutral states (h⁰, H⁰ and A⁰) and 1 charged (h⁺)

Analysis from a **model-independent** perspective couplings, masses and widths as **free parameters**

and subsequent reinterpretation in terms of specific models

Luca Panizzi

SM + t' + S with $t' \rightarrow St$

- S can be either a scalar or a pseudoscalar
- Neglect (for the moment) other decays of the t'

$$SM + t' + S$$
 with $t' \rightarrow St$

- S can be either a scalar or a pseudoscalar
- Neglect (for the moment) other decays of the t'

The Lagrangian

$$\begin{aligned} \mathcal{L} &= \left(\kappa_L^S \, \vec{t}_R' t_L S + \kappa_R^S \, \vec{t}_L' t_R S + \text{h.c.}\right) - \frac{S}{\nu} \sum_f m_f \left(\kappa_f \bar{f} f + i \tilde{\kappa}_f \bar{f} \gamma_S f\right) \\ &+ \frac{S}{\nu} \left(2\lambda_W m_W^2 W_\mu^+ W^{-\mu} + \lambda_Z m_Z^2 Z_\mu Z^\mu \right) + \frac{S}{16\pi^2 \nu} \sum_V \left(\kappa_V g_V^2 \, V_{\mu\nu}^a V^{a\mu\nu} + \tilde{\kappa}_V g_V^2 \, V_{\mu\nu}^a \tilde{V}^{a\mu\nu} \right) \end{aligned}$$

$$SM + t' + S$$
 with $t' \rightarrow St$

- S can be either a scalar or a pseudoscalar
- Neglect (for the moment) other decays of the t'

$$SM + t' + S$$
 with $t' \rightarrow St$

- S can be either a scalar or a pseudoscalar
- Neglect (for the moment) other decays of the t'

Couplings can be switched on and off depending on the scenario under consideration Numerical UFO model implemented and soon publicly available

Focus on S decaying with significant BR to either $\gamma\gamma$ or γZ (loop level interactions)

Bounds from LHC

Recast of LHC searches

$pp \to t'\overline{t}' \to St \ S\overline{t}$

Two *S* decays considered $\{\gamma\gamma, \gamma Z\}$

- Narrow width approximation for both t' and S (width of t' set to 0.1% of its mass)
- The two channel are considered separately assuming 100% branching ratio on each
- Masses of t' and S as free parameters
- Simulations at LO with MADGRAPH5_AMC@NLO associating NLO+NNLL pair production cross-sections computed with HATHOR

The searches

- ATLAS 1707.04147: "Search for new phenomena in **high-mass diphoton** final states using 37 fb⁻¹ of proton–proton collisions collected at $\sqrt{s} = 13$ TeV with the ATLAS detector"
- ATLAS 1807.11883: "Search for new phenomena in events with **same-charge leptons** and *b*-jets in *pp* collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector"

Both searches implemented and validated in MADANALYSIS 5

Recast of 1707.04147

Recast of 1807.11883

The search

- 8 Signal regions
- 4 with SS leptons and 4 with three leptons
- 1 to multiple jets and 1 to 3 b-jets
- cuts on H_T and E_T

Region name	N_{j}	N_b	N_{ℓ}	Lepton charges	Kinematic criteria
$VR1b2\ell$ SR1b2\ell	$\stackrel{\geq}{\geq} 1 \\ \stackrel{\geq}{\geq} 1$	1 1	2 2	++ or ++ or	$\begin{array}{l} 400 < H_{\rm T} < 2400 \ {\rm GeV} \ {\rm or} \ E_{\rm T}^{\rm miss} < 40 \ {\rm GeV} \\ H_{\rm T} > 1000 \ {\rm GeV} \ {\rm and} \ E_{\rm T}^{\rm miss} > 180 \ {\rm GeV} \end{array}$
$VR2b2\ell$ $SR2b2\ell$	$\stackrel{\geq}{_{\geq}2}{_{\geq}2}$	$^{2}_{2}$	2 2	++ or ++ or	$\begin{array}{l} H_{\rm T} > 400~{\rm GeV} \\ H_{\rm T} > 1200~{\rm GeV} ~{\rm and}~ E_{\rm T}^{\rm miss} > 40~{\rm GeV} \end{array}$
VR3b2ℓ SR3b2ℓ_L SR3b2ℓ	$\stackrel{\geq 3}{\geq 7} \\ \stackrel{\geq 3}{\geq 3}$	≥ 3 ≥ 3 ≥ 3	2 2 2	++ or ++ or ++ or	$\begin{array}{l} 400 < H_{\rm T} < 1400 ~{\rm GeV} ~{\rm or}~ E_{\rm T}^{\rm miss} < 40 ~{\rm GeV} \\ 500 < H_{\rm T} < 1200 ~{\rm GeV} ~{\rm and}~ E_{\rm T}^{\rm miss} > 40 ~{\rm GeV} \\ H_{\rm T} > 1200 ~{\rm GeV} ~{\rm and}~ E_{\rm T}^{\rm miss} > 100 ~{\rm GeV} \end{array}$
$VR1b3\ell$ SR1b3\ell	$\stackrel{\geq}{_{\geq}1}$	$^{1}_{1}$	$^{3}_{3}$	any any	$\begin{array}{l} 400 < H_{\rm T} < 2000 \ {\rm GeV} \ {\rm or} \ E_{\rm T}^{\rm miss} < 40 \ {\rm GeV} \\ H_{\rm T} > 1000 \ {\rm GeV} \ {\rm and} \ E_{\rm T}^{\rm miss} > 140 \ {\rm GeV} \end{array}$
$VR2b3\ell$ SR2b3\ell	$\stackrel{\geq}{_{\geq}2}{_{\geq}2}$	2 2	$^{3}_{3}$	any any	$\begin{array}{l} 400 < H_{\rm T} < 2400 \ {\rm GeV} \ {\rm or} \ E_{\rm T}^{\rm miss} < 40 \ {\rm GeV} \\ H_{\rm T} > 1200 \ {\rm GeV} \ {\rm and} \ E_{\rm T}^{\rm miss} > 100 \ {\rm GeV} \end{array}$
VR363ℓ SR363ℓ_L SR363ℓ	$\stackrel{\geq}{_{\sim}} \frac{3}{5}$ $\stackrel{\geq}{_{\sim}} 3$	≥ 3 ≥ 3 ≥ 3	3 3 3	any any any	$\begin{array}{l} H_{\rm T} > 400 ~{\rm GeV} \\ 500 < H_{\rm T} < 1000 ~{\rm GeV} ~{\rm and} ~ E_{\rm T}^{\rm miss} > 40 ~{\rm GeV} \\ H_{\rm T} > 1000 ~{\rm GeV} ~{\rm and} ~ E_{\rm T}^{\rm miss} > 40 ~{\rm GeV} \end{array}$

Combined bounds

ATLAS 1707.04147 and 1807.11883

How to improve:

- OS dilepton searches
- diphoton at low invariant mass
- SUSY searches (?)

Analysis strategy

This allows to reconstruct less photons, otherwise bkg dominated mostly by (poorly controllable) fakes.

Analysis strategy

This allows to reconstruct less photons, otherwise bkg dominated mostly by (poorly controllable) fakes.

$\gamma\gamma$ signal region

```
1) N_{\gamma} \ge 2 \text{ with } p_T^{\gamma_{1,2}} > 30 \text{ GeV and } |\eta^{\gamma_{1,2}}| < 2.37

2) N_j \ge 1 \text{ with } p_T^{\gamma_1} > 25 \text{ GeV and } |\eta^{\gamma_1}| < 2.47

3) N_b \ge 1

4) |m_{\gamma\gamma} - m_S| < 20 \text{ GeV}

5) \Delta R_{\gamma\gamma} < 1.0 (1.4) \text{ for } m_S = 100 (\ge 200) \text{ GeV}
```

Analysis strategy

Force target decay on one branch, inclusive on the other

Example with $S \rightarrow \gamma \gamma$ decay

This allows to reconstruct less photons, otherwise bkg dominated mostly by (poorly controllable) fakes.

$\gamma\gamma$ signal region

1)
$$N_{\gamma} \ge 2$$
 with $p_T^{\gamma_{1,2}} > 30$ GeV and $|\eta^{\gamma_{1,2}}| < 2.37$
2) $N_f \ge 1$ with $p_T^{j_1} > 25$ GeV and $|\eta^{j_1}| < 2.47$
3) $N_b \ge 1$
4) $|m_{\gamma\gamma} - m_S| < 20$ GeV
5) $\Delta R_{\gamma\gamma} < 1.0 (1.4)$ for $m_S = 100 (\ge 200)$ GeV

γZ signal region

Z is reconstructed through leptonic decay

1) At least 1 reconstructed Z: $|m_{ll} - m_Z| < 10 \text{ GeV}$ 2) $N_{\gamma} \ge 1$ with $p_T^{\gamma 1} > 30 \text{ GeV}$ and $|\eta^{\gamma 1}| < 2.37$ 3) $N_b \ge 1$ 4) if $m_S < 200 \text{ GeV}$: $p_T^{\gamma} + p_T^b + p_T^Z > 250 \text{ GeV}$ 4) if $m_S \ge 200 \text{ GeV}$: $H_T + E_T^{miss} > 0.8m'_t$ 5) $|m_{\gamma Z} - m_S| < 15 \text{ GeV}$

Efficiencies (preliminary results)

Example for $S \to \gamma \gamma$: $S = L \sigma(m_t') \left(\epsilon_{St,\gamma\gamma}^{\delta t,\gamma\gamma} BR_{t'\to St}^2 BR_{S\to\gamma\gamma}^2 + \sum_{X \neq St,\gamma\gamma} \epsilon_X^Y BR_{t'\to X} BR_{t'\to X} BR_{t'\to Y} \right)$

Luca Panizzi

Expected reach (preliminary results)

Examples with the $\gamma Z SR$

• Low m_S : suppression of γZ channel, discovery reach and bounds are weak

 High m_s: significant BRs in channels with photons and Z, discovery reach and bounds driven by the cross-section decrease

Expected reach (preliminary results)

Examples with the $\gamma Z SR$

• Low m_S : suppression of γZ channel, discovery reach and bounds are weak

 High m_S: BRs in both γZ and γγ are low, discovery reach and bounds not as strong as in the previous case

Luca Panizzi

Range of validity of the analysis

VLQ with finite width

- Tts coupling: partial width and rescaling of cross-section
- Masses and total widths: kinematics

Luca Panizzi

Range of validity of the analysis

Scalar vs Pseudoscalar (example with ZZ decay)

$$\mathcal{L}_{S}^{\text{loop}} = \frac{S}{16\pi^{2}\nu} \sum_{V} \kappa_{V} g_{V}^{2} V_{\mu\nu}^{a} V^{a\mu\nu} \quad \mathcal{L}_{S}^{\text{tree}} = \frac{S}{\nu} \lambda_{Z} m_{Z}^{2} Z_{\mu} Z^{\mu}$$

$$\mathcal{L}_{PS} = \frac{S}{16\pi^2 v} \sum_V \tilde{\kappa}_V g_V^2 V_{\mu\nu}^a \widetilde{V}^{a\mu\nu}$$

Luca Panizzi

Decays into charged scalars

 $X_{5/3} \rightarrow h^+ t$

- No decays into the neutral scalar sector
- Only other possible decay to W^+t , already searched by both ATLAS and CMS

Decays into charged scalars

 $X_{5/3} \rightarrow h^+ t$

- No decays into the neutral scalar sector
- Only other possible decay to W⁺t, already searched by both ATLAS and CMS

Recast of ATLAS 1807.11883

The search (a reminder)

٩	8	Signal	regions
---	---	--------	---------

- 4 with SS leptons and 4 with three leptons
- 1 to multiple jets and 1 to 3 b-jets
- cuts on H_T and E_T

Region name	N_j	N_b	N_{ℓ}	Lepton charges	Kinematic criteria
$VR1b2\ell$	≥ 1	1	2	++ or	$400 < H_T < 2400 \text{ GeV} \text{ or } E_T^{\text{miss}} < 40 \text{ GeV}$
$SR1b2\ell$	≥ 1	1	2	++ or	$H_{\rm T} > 1000~{\rm GeV}$ and $E_{\rm T}^{\rm miss} > 180~{\rm GeV}$
$VR2b2\ell$	≥ 2	2	2	++ or	$H_{\rm T} > 400~{ m GeV}$
$SR2b2\ell$	≥ 2	2	2	++ or	$H_T > 1200 \text{ GeV}$ and $E_T^{miss} > 40 \text{ GeV}$
VR362ℓ	≥ 3	≥ 3	2	++ or	$400 < H_T < 1400 \text{ GeV} \text{ or } E_T^{\text{miss}} < 40 \text{ GeV}$
SR362ℓ_L	≥ 7	≥ 3	2	++ or	$500 < H_T < 1200 \text{ GeV}$ and $E_T^{min} > 40 \text{ GeV}$
$SR3b2\ell$	≥ 3	≥ 3	2	++ or	$H_{\rm T}>1200~{\rm GeV}$ and $E_{\rm T}^{\rm miss}>100~{\rm GeV}$
VR163ℓ	≥ 1	1	3	any	$400 < H_T < 2000 \text{ GeV} \text{ or } E_T^{miss} < 40 \text{ GeV}$
$SR1b3\ell$	≥ 1	1	3	any	$H_{\rm T} > 1000~{\rm GeV}$ and $E_{\rm T}^{\rm miss} > 140~{\rm GeV}$
$VR2b3\ell$	≥ 2	2	3	any	$400 < H_T < 2400 \text{ GeV} \text{ or } E_T^{\text{miss}} < 40 \text{ GeV}$
$SR2b3\ell$	≥ 2	2	3	any	$H_T > 1200 \text{ GeV}$ and $E_T^{miss} > 100 \text{ GeV}$
VR363ℓ	≥ 3	≥ 3	3	any	$H_{\rm T} > 400~{\rm GeV}$
SR363 <i>ℓ</i> _L	≥ 5	≥ 3	3	any	$500 < H_T < 1000 \text{ GeV}$ and $E_T^{miss} > 40 \text{ GeV}$
$SR3b3\ell$	≥ 3	≥ 3	3	any	$H_{\rm T} > 1000~{\rm GeV}$ and $E_{\rm T}^{\rm miss} > 40~{\rm GeV}$

$$pp \rightarrow X_{5/3} \overline{X}_{5/3} \rightarrow (h^+ t) (h^- \overline{t})$$

Four h^+ decays considered $\tau^+ \nu_{\tau}, \mu^+ \nu_{\mu}$ $t\bar{b}, jj(=ud + cs)$

- Narrow width approximation for both $X_{5/3}$ and h^+
- The four channel are considered separately assuming 100% branching ratio on each
- Masses of $X_{5/3}$ and h^+ as free parameters

Recast of ATLAS 1807.11883

Luca Panizzi

Vector-like quarks at the LHC

Benchmark examples

Decays of the charged Higgs

• $t\bar{b}$ for high masses

Different dominant decay channels depending on assumptions on the interactions and on the m_{h+}

All scenarios correspond to a h^+ with narrow width

Benchmark examples

				000	40	•	^o pair		.2.7			
M_{i+}		$\tau \nu_{\tau}$	I		$\mu \nu_{\mu}$			tb			jj	
n	BR	σ	$\sigma_{\rm excl}$	BR	σ	$\sigma_{\rm excl}$	BR	σ	$\sigma_{\rm excl}$	BR	σ	$\sigma_{\rm excl}$
2HDM-I with $\tan\beta$ =10 and $\sin(\beta - \alpha) = 1$												
100 200 500	0.67 ~0 ~0	$\begin{array}{c} 19 \\ {\sim} 0 \\ {\sim} 0 \end{array}$	25 31 48	$\begin{array}{c} {\sim} 0 \\ {\sim} 0 \\ {\sim} 0 \end{array}$	$\begin{array}{c} {\sim}0\\ {\sim}0\\ {\sim}0\end{array}$	2.1 2.2 4.8	0.998 0.998	42.5 42.5	8.1 7.8	0.295 ~0 ~0	$\begin{array}{c} 3.7 \\ \sim 0 \\ \sim 0 \end{array}$	72 58 52
2HDM-II with $ an \beta$ =10 and $\sin(\beta - \alpha) = 1$												
100 200 500	0.975 0.46 0.105	40.6 9 0.47	25 31 48	$\begin{array}{c} {\sim} 0 \\ {\sim} 0 \\ {\sim} 0 \end{array}$	$\begin{array}{c} {\sim} 0 \\ {\sim} 0 \\ {\sim} 0 \end{array}$	2.1 2.2 4.8	0.53 0.892	12 34	8.1 7.8	$\begin{array}{c} \sim 0 \\ \sim 0 \\ \sim 0 \end{array}$	$\begin{array}{c} {\sim}0\\ {\sim}0\\ {\sim}0\end{array}$	72 58 52
2HDM-III with $\tan\beta$ =3.5												
100 200 500	$\begin{array}{c} 0.03 \\ \sim 0 \\ \sim 0 \end{array}$	$\begin{array}{c} 0.04 \\ \sim 0 \\ \sim 0 \end{array}$	25 31 48	0.8 ∼0 ∼0	27 ∼0 ∼0	<mark>2.1</mark> 2.2 4.8	0.99 0.997	42 42	8.1 7.8	0.16 ~0 ~0	$\begin{array}{c} 1 \\ \sim 0 \\ \sim 0 \end{array}$	72 58 52

 $M_{\rm W} = 1000 \, {\rm GeV} = \sigma^{NNLO} = 42.7 \, {\rm fb}$

Increasing the width

Reduced cross-section:

$$\sigma_{h+th-\bar{t}}(M_{X_{5/3}},\Gamma_{X_{5/3}},m_{h+},y_{Xth+}) = (y_{Xth+})^4 \hat{\sigma}_{h+th-\bar{t}}(M_{X_{5/3}},\Gamma_{X_{5/3}},m_{h+})$$

Luca Panizzi

Conclusions

Single production of VLQs with finite width interacting with the SM

- Finite width effects can be sizable
- Model-independent parametrisation in terms of mass and width-to-mass ratio
- UFO model available for generation of signal and interference studies in the finite width regime and for NLO studies in the NWA

Ongoing studies for analysis of NLO effects in the finite width regime

Production of VLQs interacting also with exotic scalars

- New interesting channels for trying to discover new physics in extensions of the SM with VLQs and new scalars
- Ongoing study to assess the sensitivity of experimental searches and the possibility to develop different strategies for the finite width regime
- UFO model validated and soon publicly available

Solving the Higgs fine tuning with top partners

PI: Sara Strandberg (Stockholm University and ATLAS)

- Aim: widen the searches for physics beyond the SM that solves the Higgs fine-tuning problem
- Three different and complementary tracks:
 - 1) Direct searches for the scalar top squarks in SUSY
 - 2) Direct searches for the vector-like top quarks in compositeness models
 - 3) Indirect searches for top partners which are not kinematically accessible at the LHC energies
- Strengthen collaboration between experimental and theoretical particle physicists in Sweden
- Construct non-minimal simplified:
 - SUSY models for direct searches for stops
 - compositeness models for direct searches for vector-like quarks
- Quantify ATLAS' current sensitivity to these models and if still viable, search for them with Run 2 and early Run 3 data
- Construct optimal observables for indirect searches of top partners and use them in analyses of Run 2 and early Run 3 data.

Compositeness and VLQ branch

ATLAS: E. Bergeås Kuutmann, V. Ellajosyula, M. Isacson, T. Mathisen Theory: R. Benbrik, D. Buarque Franzosi, R. Enberg, G. Ferretti, Y. B. Liu, T. Mandal, S. Moretti, L. Panizzi

Knut och Alice Wallenbergs Itiftelse

Luca Panizzi

Backup

Interference

Recast of CMS-B2G-16-006

Folding search efficiencies into the reduced cross-section:

Mass of the scalar as new parameter

 $\sigma_{\bar{t}\bar{t}SS}(C_{TtS}, M_T, m_S, \Gamma_T^{tot}(C_{\mathsf{decays}}, M_T, m_{\mathsf{decays}}),) = C_{TtS}^4 \, \hat{\sigma}_{\bar{t}\bar{t}SS}(M_T, m_S, \Gamma_T^{tot}) \xrightarrow{\frac{\Gamma_T^{tot}}{M_T} \to 0} \sigma_{T\bar{T}}(M_T) BR(T \to tS)^2$

- TtS coupling: partial width and rescaling of cross-section
- Masses and total widths: kinematics

Mass of the scalar as new parameter

 $\sigma_{\bar{t}\bar{t}SS}(C_{TtS}, M_T, m_S, \Gamma_T^{tot}(C_{\mathsf{decays}}, M_T, m_{\mathsf{decays}}),) = C_{TtS}^4 \, \hat{\sigma}_{\bar{t}\bar{t}SS}(M_T, m_S, \Gamma_T^{tot}) \xrightarrow{\frac{\Gamma_T^{tot}}{M_T} \to 0} \sigma_{T\bar{T}}(M_T) BR(T \to tS)^2$

- TtS coupling: partial width and rescaling of cross-section
- Masses and total widths: kinematics

Luca Panizzi

Mass of the scalar as new parameter

 $\sigma_{\bar{t}\bar{t}SS}(C_{TtS}, M_T, m_S, \Gamma_T^{tot}(C_{\mathsf{decays}}, M_T, m_{\mathsf{decays}}),) = C_{TtS}^4 \, \hat{\sigma}_{\bar{t}\bar{t}SS}(M_T, m_S, \Gamma_T^{tot}) \xrightarrow{\frac{\Gamma_T^{tot}}{M_T} \to 0} \sigma_{T\bar{T}}(M_T) BR(T \to tS)^2$

- TtS coupling: partial width and rescaling of cross-section
- Masses and total widths: kinematics

Luca Panizzi

Kinematics in the finite width regime

Kinematics in the finite width regime

Kinematics in the finite width regime

Recast of 1707.04147

Validation on $pp \rightarrow S \rightarrow \gamma \gamma$

Experimental acceptances (from HEPdata in black) vs simulation (in red), and relative difference

Validation at low minv achieved only by modifying the isolation parameters wrt to experimental value

Recast of 1807.11883

Validation on $pp \to X_{5/3} \overline{X}_{5/3} \to (W^+ t)(W^- \overline{t})$

