RooStats: a tool for statistical data analysis

Grégory Schott

Karlsruhe Institute of Technology (KIT)

heptools Higgs mini-workshop Torino - November 24th 2009

Outline

- What is RooStats? It's a collaborative project between ATLAS, CMS and ROOT to provide a consolidated set of statistical tools
 - TWiki: https://twiki.cern.ch/twiki/bin/view/RooStats/WebHome
- This is not a talk about statistics
 - See: http://indico.cern.ch/conferenceDisplay.py?confld=73545
- Neither about the software implementation
 - See: http://indico.cern.ch/conferenceDisplay.py?confld=72320
- Description and motivation of the project

Motivations

- Statistical interpretation of data in an analysis
 - useful to have a common, well tested package
- Combination of analyzes within an experiment
- Possible combination of Atlas and CMS analyzes
- Be able to compare statistical methods
- Generalize and cleanup statistical tools in ROOT
- Want to agree on statistical conventions
 - avoid apples-to-oranges comparisons

Features

- Rely on RooFit: provides a developed & flexible basis
- Extension to complex problems
 - Work on arbitrary data and model and can handle many observable, parameter of interest and nuisance parameters
- Combine at analysis level
 - Retain full information for treating correlations
- All statistical methods start from description of likelihood function (or PDF)

Likelihood analysis

- Simple likelihood: $L_i(n_i|r,s_i,b_i) = \frac{e^{-rs_i-s_i}}{n_i!}(rs_i+b_i)^{n_i}$
 - Can be extended to binned likelihood
- Multiple channels: $L(r) = \prod_i L_i(n_i|r,s_i,b_i)$
- With observables; extended, unbinned likelihood:

$$L(\vec{x}|r, s, b, \vec{\theta}_s, \vec{\theta}_b) = \frac{e^{-rs-b}}{n!} (rs + b)^n \prod_{j=1}^n (rs f_s(\vec{x}_j | \vec{\theta}_s) + b f_b(\vec{x}_j | \vec{\theta}_b))$$

 $-f_s$, f_b signal and background distribution from MC or control samples

(taken from R. Cousins)

- Once the statistical problem is described, various methods can be easily applied and compared
 - Bayesian, Frequentist, Likelihood ratio, "CLs", ...
- The community can ask the result be shown with one or another method and to study sampling properties
 - If methods agree → important check of robustness
 - If methods disagree → we learn something
 - The results are answers to different questions
 - Bayesian methods can have poor frequentist properties
 - Frequentist methods can badly violate likelihood principle

Workspace

- Developed workspace class to facilitate combinations
- Workspaces contains any RooFit object, in particular:
 - Data (binned or unbinned)
 - PDF model
 - Uncertainty / shape of nuisance parameters
- Utilities to correlate objects or ease the description of the PDF model (Factory)
- Can be saved to file, easily shared and used in combination with Workspaces of other analyzes
- Allow to eventually distribute data and model in an electronic form once analysis has been published

Overview of classes in RooStats

Some Atlas/CMS Higgs projections

Summary

- Code in CMS and ATLAS combined and improved to form the RooStats project
- RooStats available from ROOT since December 2008 (new release next week 5.25.04)
 - Common implementation of methods
 - Speak common language for combination
 - Flexible enough to accommodate all cases
- Some improvements needed:
 - Consolidation / speed / documentation / testing
 - Open project, new contributors are welcome

Conclusion

- Issues with combination:
 - Need common software → RooStats
 - Need convergence on details of statistical methods → ATLAS-CMS statistics forum
 - Inputs (MC generators, previous measurements)
 - Decompose various effect; determine correlations
 - Best knowledge on systematic uncertainties
 - determine and model them
 - → Need discussion and agreement to converge