Electric Dipole Moments	EDM Search in Storage Rings	Studies at COSY	CPEDM	Summary	Appendix

Search for electric dipole moments of charged particles in storage rings

Paolo Lenisa

University of Ferrara and INFN, Italy

LNF-Frascati, June 27th 2019

Electric Dipole Moments	EDM Search in Storage Rings	Studies at COSY	CPEDM	Summary	Appendix

Motivation

Introduction

Electric Dipole Moments (EDM)

- Permanent separation of + and charge
- Fundamental property of particles (like magnetic moment, mass, charge)
- Possible only via violation of time-reversal $T \stackrel{CPT}{=} CP$ and parity P
- Nothing to do with EDMs of molecules (e.g. H_2O)
- connection to matter-antimatter asymmetry

Electric Dipole Moments	EDM Search in Storage Rings	Studies at COSY	CPEDM 000000000000000000000000000000000000	Summary O	Appendix 0000000
Symmetry violationa					

Symmetry violations

T and P violation of EDM

 $H = -\mu \frac{\vec{s}}{s} \cdot \vec{B} - d \frac{\vec{s}}{s} \cdot \vec{E}$ • T: $H = -\mu \frac{\vec{s}}{s} \cdot \vec{B} + d\frac{\vec{s}}{s} \cdot \vec{E}$ • P: $H = -\mu \frac{\overrightarrow{s}}{\overrightarrow{s}} \cdot \overrightarrow{B} + d \frac{\overrightarrow{s}}{\overrightarrow{s}} \cdot \overrightarrow{E}$

EDM meas. test violation of P and T symmetries $\begin{pmatrix} CPT \\ = \end{pmatrix}$

Electric Dipole Moments	EDM Search in Storage Rings	Studies at COSY	CPEDM	Summary	Appendix
000000					

Symmetry violations

CP-violation & Matter-Antimatter Asymmetry

Matter dominance:

Excess of Matter in the Universe:

$$\begin{tabular}{|c|c|c|c|c|c|c|}\hline \eta = \frac{n_B - n_{\overline{B}}}{n_{\gamma}} & \textbf{observed} & \textbf{SM prediction} \\ \textbf{6} \times \textbf{10}^{-10} & \textbf{10}^{-18} \end{tabular}$$

Sacharov (1967): CP-violation needed for baryogenesis

• \Rightarrow New CP-V sources beyond SM needed

• Could show up in EDMs of elementary particles

Electric Dipole Moments	EDM Search in Storage Rings	Studies at COSY	CPEDM	Summary	Appendix
0000000					

Symmetry violations

CP-violation & connection to EDMs

Standard Model					
Weak interaction					
CKM matrix	ightarrow unobservably small EDMs				
Strong interaction					
θ_{QCD}	\rightarrow best limit from neutron EDM				
beyond Standard Model					
e.g. SUSY	\rightarrow accessible by EDM measurements				

Electric Dipole Moments	EDM Search in Storage Rings	Studies at COSY	CPEDM	Summary	Appendix
0000000					

Limits

EDM: Current upper limits

FZ Jülich: EDMs of charged hadrons: p, d, ³He

Electric Dipole Moments	EDM Search in Storage Rings	Studies at COSY	CPEDM	Summary	Appendix
0000000					

Limits

Why Charged Particle EDMs?

- No direct measurement for charged hadron EDMs
- Potentially higher sensitivity (compared to neutrons):
 - longer lifetime;
 - more stored protons/deuterons
 - can apply larger electric fields in storage rings

o complementary to neutron EDM:

EDM of single particle not sufficient to identify CP-V source

Electric Dipole Moments	EDM Search in Storage Rings	Studies at COSY	CPEDM	Summary	Appendix
000000					

Limits

Sources of CP Violation

J. de Vries

Electric Dipole Moments	EDM Search in Storage Rings	Studies at COSY	CPEDM	Summary	Appendix

Experimental method

Electric Dipole Moments	EDM Search in Storage Rings	Studies at COSY	CPEDM	Summary	Appendix
	••••				

Concept

Search for EDM in storage rings: concept

Procedure

- Inject particles in storage ring
- **2** Align spin along momentum (\rightarrow freeze horiz. spin-precession)
- Search for time development of vertical polarization

Electric Dipole Moments	EDM Search in Storage Rings	Studies at COSY	CPEDM	Summary	Appendix
	0000				

Concept

Spin Precession in a storage ring

Thomas-BMT equation

$$\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s} = \frac{-q}{m} \left[\underbrace{\mathbf{G}\vec{B} + \left(\mathbf{G} - \frac{1}{\gamma^2 - 1}\right)\vec{v} \times \vec{E}}_{=\Omega_{MDM}} + \underbrace{\frac{\eta}{2}\left(\vec{E} + \vec{v} \times \vec{B}\right)}_{=\Omega_{EDM}} \right] \times \vec{s}$$

- Mag. dip. mom. (MDM): $\overrightarrow{\mu} = 2(G+1)\frac{q\hbar}{2m}\overrightarrow{s}$ (G=1.79 for proton)

- El. dip. mom. (EDM):
$$\vec{d} = \eta \frac{q\hbar}{2mc} \vec{s}$$
 ($\eta = 2 \cdot 10^{-15}$ for d= $10^{-29} e \cdot cm$)

Frozen spin

$$\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s} = \frac{-q}{m} \left[\underbrace{\vec{GB} + \left(\vec{G} - \frac{1}{\gamma^2 - 1}\right) \vec{v} \times \vec{E}}_{\mathcal{Q}_{MOV} = 0 \rightarrow \text{frozenspin}} + \frac{\eta}{2} \left(\vec{E} + \vec{v} \times \vec{B}\right) \right] \times \vec{s}$$

- Achievable with pure electric field for proton (G>0): $G = \frac{1}{\sqrt{2}-1}$

- Requires special combination of E, B fields and γ for d, ${}^{3}He$ (G<0)

0000000 000 00 00000000000000000 00000000	Electric Dipole Moments	EDM Search in Storage Rings	Studies at COSY	CPEDM	Summary	Appendix
		0000				

Requirements and expectation

Requirements

High precision, primarily electric storage ring

- Crucial role of alignment, stability, field homogeneity and shielding from magnetic fields.
- High beam intensity: N=4 · 10¹⁰ per fill
- Polarized hodron beams: P=0.8
- Long spin coherence time: $\tau = 1000 \text{ s}$
- Large electric fields: E = 10 MV/m
- Efficient polarimetry with:
 - large analyzing power: A = 0.6
 - high efficiency detection: eff. = 0.005

Expected statistical sensitivity in 1 year of DT:

•
$$\sigma_{stat} = rac{\hbar}{\sqrt{N} f_{ au} PAE} \Rightarrow \sigma_{stat} = 10^{-29} e \cdot cm$$

• Experimentalist's goal: provide σ_{syst} to the same level.

Electric Dipole Moments	EDM Search in Storage Rings	Studies at COSY	CPEDM	Summary	Appendix
	0000				

Requirements and expectation

Systematics

Example: radial B field (*B_r***)**

- B_r can mimic EDM (if $dE_r \approx \mu B_r$)
- E.g. $d = 10^{-29}$ e \cdot cm, $E_r = 10$ MV/m
 - Corresponds to $B_r = \frac{dE_r}{\mu} \approx 10^{-17} T$

Solution

- Use of two beams running clockwise and counterclockwise
- Separation of the two beams sensitive to B_r

Achievements at COSY

The COSY storage ring

The COSY storage ring at FZ-Jülich (Germany)

COoler SYnchrotron COSY

- Cooler and storage ring for (pol.) protons and deuterons.
- Momenta p= 0.3-3.7 GeV/c
- Phase-space cooled internal and extracted beams

Formerly used as spin-physics machine for hadr. physics:

- Ideal starting point for srEDM related R&D
- First direct measurement of deuteron EDM

Electric Dipole Moments	EDM Search in Storage Rings	Studies at COSY	CPEDM 000000000000	Summary O	Appendix 0000000
Experiment					

Experiment preparation

- **①** Inject and accelerate vertically pol. deut. to $p \approx 1 \text{ GeV/c}$
- Plip spin with solenoid into horizontal plane
- Extract beam slowly (100 s) on target
- Measure asymmetry and determine spin precession

Electric Dipole Moments	EDM Search in Storage Rings	Studies at COSY	CPEDM 0000000000000	Summary o	Appendix 0000000
Experiment					
Polarimeter					

- Elastic deuteron-carbon scattering
- Up/Down asymmetry \propto horizontal polarization $\rightarrow \nu_s = \gamma G$
- Left/Right asymmetry \propto vertical polarization \rightarrow d

- Deut. at p = 1GeV/c: $\gamma = 1.13$ and $\nu_s = \gamma G \simeq$ 0.161
- Spin-dependent differential cross section: $N_{up,down} \propto 1 \pm \frac{3}{2} p_z A_y sin(\nu_s \omega_{rev} t), f_{rev} = 781 \text{ kHz}$

Electric Dipole Moments	EDM Search in Storage Rings	Studies at COSY	CPEDM	Summary	Appendix
		000000000000000000000000000000000000000			

Experiment

Time-stamp system

Asymmetry:
$$\epsilon = \frac{N_{up} - N_{down}}{N_{up} + N_{down}} = p_z A_y \sin (2\pi \cdot \nu_s \cdot n_{turns})$$

Challenge

- Spin precession frequency: 126 kHz
- $\nu_s = 0.16 \rightarrow 6$ turns/precession
- event rate: 5000 $s^{-1} \rightarrow 1$ hit / 25 precessions \rightarrow no direct fit of rates

Solution: map many event to one cycle

- Counting turn number $n \rightarrow phase$ advance $\phi_s = 2\pi\nu_s n$
- For intervals of $\Delta n = 10^6$ turns: $\phi_s \rightarrow \phi_s \mod 2\pi$

Electric Dipole Moments	EDM Search in Storage Rings	Studies at COSY	CPEDM	Summary	Appendix
		000000000000000000000000000000000000000			

Optimization of spin-coherence time

2012: First result

Exp. decay of asymmetry:

$$\epsilon_{UD} = \frac{N_D(t) - N_U(t)}{N_D(t) + N_U(t)}$$

2013: improvement

Use of 6-pole magnets to correct higher order effects: spin-coherence time increased

Electric Dipole Moments	EDM Search in Storage Rings	Studies at COSY	CPEDM	Summary	Appendix
		000000000000000000000000000000000000000			

Optimization of spin-coherence time

More recent progress on τ_{SCT}

- $\tau_{SCT} = (782 \pm 117)s$
- Previously: $\tau_{SCT}(VEPP) \approx 0.5 \text{ s}$ ($\approx 10^7 \text{ spin revolutions}$)

Electric Dipole Moments	EDM Search in Storage Rings	Studies at COSY	CPEDM	Summary	Appendix
		000000000000000000000000000000000000000			

Optimization of spin-coherence time

Major achievement:

- About 10⁹ stored deuterons.
- Long SCT was one of main obstacles of srEDM experiments.
- Large value of SCT of crucial importance, since $\sigma_{STAT} \propto \frac{1}{\tau_{SCT}}$

Electric Dipole Moments	EDM Search in Storage Rings	Studies at COSY	CPEDM	Summary	Appendix
		000000000000000000000000000000000000000			

Spin-tune

Stored deuterons at COSY

• $p_d = 1 \text{ GeV/c} (\gamma = 1.13), \text{ G} = -0.1425 \Rightarrow \nu_s = \gamma G \approx -0.161$

•
$$f_{rev}$$
 = 781 kHz \Rightarrow $f_s = \nu_s \times f_{rev} \approx$ 126 kHz

Electric Dipole Moments	EDM Search in Storage Rings	Studies at COSY	CPEDM	Summary	Appendix
		000000000000000000000000000000000000000			

Precise determination of the spin-tune

Experimental result:

Interpolated spin tune in 100 s:

 $|
u_s| = (16097540628.3 \pm 9.7) \times 10^{-11} \ (\Delta
u_s /
u_s pprox 10^{-10})$

- Angle precision: $2\pi \times 10^{-10} = 0.6$ nrad
- Previous best: 3×10^{-8} per year (g-2 experiment)

ullet ightarrow new tool to study systematic effects in storage rings

Major achievement:

Error of phase-lock σ_{ϕ} = 0.21 rad

Electric Dipole Moments	EDM Search in Storage Rings	Studies at COSY	CPEDM	Summary	Appendix
		000000000000000000000000000000000000000			

Study of machine imperfections

Precise experimental technique

New method to investigate magnetic machine imperfections through accurate determination of spin-tune

Spin tune mapping

 Two solenoids act as spin rotators → generate artificial imperfection fields

• Measure spin-tune shifts vs spin kicks

- Saddle point determines tilt of stable spin axis by machine imperfections
- Control of background from MDM: $\Delta c = 2.8 \times 10^{-6}$ rad
- Systematics sensitivity for d-EDM: $\sigma_d \approx 10^{-20} \text{ e} \cdot \text{cm}$

Electric Dipole Moments	EDM Search in Storage Rings	Studies at COSY	CPEDM	Summary	Appendix
		000000000000000000000000000000000000000			

Other technological developments

Electric Dipole Moments	EDM Search in Storage Rings	Studies at COSY	CPEDM	Summary	Appendix
		000000000000000000000000000000000000000			

E/B deflector development using small-scale setup

- Polished stainless steel
 - 240 MV/m at 0.05 mm with half-sphere facing flat surface
 - 17 MV/m with 1 kV at 1 mm with two small half-spheres
- Polished aluminum
 - 30 MV/m at 0.1 mm using two small half-spheres
- TiN coating
 - Smaller breakdown voltage
 - Zero dark current

Electric Dipole Moments	EDM Search in Storage Rings	Studies at COSY	CPEDM	Summary	Appendix
		000000000000000000000000000000000000000			

Dark current measurements

Dark current stainless-steel half-sphere electr. (R=10 mm)

Distances S = 1, 0.5 and 0.1 mm where:

$$E_{max} = \frac{U}{S} \cdot F$$
, where $F = \frac{1}{4} \left[1 + \frac{S}{R} + \sqrt{\left(1 + \frac{S}{R}\right)^2 + 8} \right]$

 $\label{eq:promising} \textbf{Promising} \rightarrow \textbf{tests} \text{ with real size deflector elements required}$

Achievements

E/B deflector development using real-scale setup

Equipment

- Dipole magnet B_{max} = 1.6 T
- Mass = 64 t
- Gap height = 200 mm
- Protection foil between chamber wall and detector

First results expected soon

Parameters

- Electr. length = 1020 mm
- Electr. height = 90 mm
- Electr. spacing = 20 to 80 mm
- Max potential = ± 200 kV
- Material: AI coated with TiN

Electric Dipole Moments	EDM Search in Storage Rings	Studies at COSY	CPEDM	Summary	Appendix
		000000000000000000000000000000000000000			

Beam position monitors for srEDM experiments

Development of compact BPM based on Rogowski coil

• Main adv.: short install. length (\approx 1 cm in beam direction)

Conventional BPM

- Easy to manifacture
- Length = 20 cm
- Resolution \approx 10 μ m

Rogowski BPM (warm)

- Excellent RF-signal response
- Length = 1 cm
- Resolution \approx 1.25 μ m

2 coils installed at entrance and exit of RF Wien filter

Electric Dipole Moments	EDM Search in Storage Rings	Studies at COSY	CPEDM	Summary	Appendix
		00000000000000000000000000000000000000			

Assembly stages of one Rogowski-coil BPM

Electric Dipole Moments	EDM Search in Storage Rings	Studies at COSY	CPEDM	Summary	Appendix
		000000000000000000000			

High-precision beam polarimeter with internal C target

Based on LYSO scintillator readout by SiPM

- Saint-Gobain Ceramics & Plastics
- Compared to Nal:
 - high density (7.1 vs 3.67 g/*cm*³),
 - fast decay time (45 vs 250 ns).

After runs with external beam:

- System ready for installation at COSY (summer 2019).
- Under study: Ballistic diamond pellet target for homogeneous beam sampling.

Towards a storage ring EDM measurement

Electric Dipole Moments	EDM Search in Storage Rings	Studies at COSY	CPEDM	Summary	Appendix

Staged approach

Stage 1 Stage 2 Stage 3 prototype ring dedicated storage ring precursor experiment at COSY (FZ Jülich) $\approx 150 \,\mathrm{m}$ • electrostatic storage ring magnetic storage ring magic momentum • simultaneous () and () beams (701 MeV/c) 10 vears now 5 vears $\sigma_{EDM}/(\boldsymbol{e}\cdot\mathrm{cm})$ 10^{17} 10^{18} 10^{-19} 10^{-20} 10^{-21} 10^{-22} 10^{-23} 10^{-24} 10^{-25} 10^{-26} 10^{-27} 10^{-28} 10^{-29}

Stage 1: proof of principle

Stage 1: proof of principle experiment using COSY

• Thomas - BMT equation for a *magnetic ring*:

$$\frac{d\vec{s}}{dt} = \vec{\Omega} \times \vec{s} = \frac{-q}{m} \left[\underbrace{\mathbf{G}\vec{B}}_{=\Omega_{MDM}} + \left(\mathbf{G} - \frac{1}{\gamma^2 - 1}\right) \vec{v} \times \vec{E}}_{=\Omega_{EDM}} + \underbrace{\frac{\eta}{2} \left(\vec{E} + \vec{v} \times \vec{B}\right)}_{=\Omega_{EDM}} \right] \times \vec{s}$$

Storage rings: vertical B fields, radial E field

• MDM \rightarrow fast spin precession in the horizontal plane

• EDM \rightarrow slow vertical polarization buildup, up and down

Access to EDM through motional E field

• Pure magnetic ring \rightarrow motional electric field: $\overrightarrow{v} \times \overrightarrow{B}$

● ⇒ access to EDM

Electric Dipole Moments	EDM Search in Storage Rings	Studies at COSY	CPEDM 000000000000000000000000000000000000	Summary O	Appendix 0000000
Stage 1: proof of principle					
Waveguide R	F-Wien filter				

- Developed at FZJ in collaboration with RWTH-Aachen
- Installed in the PAX low-β section at COSY

Stage 1: proof of principle	0000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	0	0000000
Waveguide R	F-Wien filter				

- Developed at FZJ in collaboration with RWTH-Aachen
- Installed in the PAX low-β section at COSY
- RF-Wien filter operation:

Electric Dipole Moments	EDM Search in Storage Rings	Studies at COSY	CPEDM	Summary	Appendix
			000000000000000000000000000000000000000		

Stage 1: proof of principle

Effect of EDM on stable spin-axis

EDM absence

EDM effect

Magnetic misalignment

EDM tilts the stable spin-axis

- Presence of EDM $\rightarrow \varepsilon_{EDM} > 0$
 - ullet ightarrow spin precess around the $ec{c}$ axis
 - \rightarrow oscill. vert. polarization $p_y(t)$

Electric Dipole Moments	EDM Search in Storage Rings	Studies at COSY	CPEDM 000000000000000000000000000000000000	Summary O	Appendix 0000000
Stage 1: proof of principle					
Polarization b	uildup				

Metod

- Wien filter operated with B normal to the ring plane
- Measurement of initial slopes of polarization buildup:

•
$$\alpha(t) = \arctan\left(\frac{P_y}{P_{xy}}\right)$$

Electric Dipole Moments EDM Search in Storage Rings oco

Stage 1: proof of principle

Measurement of EDM-like buildup signals

Rate out-of-plane angle $\dot{\alpha}(t)|_{t=0}$ as function of Wien filter RF phase ϕ_{RF}

• Variation of ϕ_{rot}^{WF} and χ_{rot}^{Sol1} affects the pattern of observed initial slopes $\dot{\alpha}$

$$\dot{\alpha}$$
 for $\phi_{rot}^{\sf WF} = -1^{\circ}$, 0°, $+1^{\circ}$ and $\chi_{rot}^{\sf Sol\,1} = 0$. $\dot{\alpha}$ for $\chi_{rot}^{\sf Sol\,1} = -1$, 0, $+1^{\circ}$ and $\phi_{rot}^{\sf WF} = 0$.

Stage 1: proof of principle

Preliminary results from run in Dec. 18

(f) First 16 points on the map.

Spin-tracking simulations necessary

- Orientation of stable spin axis at location of RF Wien filter including EDM determined by minimum of map
- Spin tracking simulation shall provide orientation of stable spin axis without EDM
- Second run foreseen in autumn 2019

Electric Dipole Moments	EDM Search in Storage Rings	Studies at COSY	CPEDM	Summary	Appendix
			000000000000000000000000000000000000000		

Stage 1: proof of principle

Next steps

Stage 2: prototype ring

Stage 2: prototype EDM storage ring

Next step

- Build demonstrator for charged particle EDM
- Project prepared by CPEDM working group (CERN+JEDI+srEDM)
 - Physics Beyond Collider process (CERN)
 - European Strategy for Particle Physics Update
- Possible host sites: COSY or CERN

Scope of prototype ring of 100 m circumference

- p at 30 MeV all-electric CW-CCW beams operation
- p at 45 MeV frozen spin including additional vertical magnetic fields

- Storage time
- CW-CCW operation
- Spin-coherence time
- Polarimetry
- Magnetic moment effects
- Stochastic cooling
- pEDM measurement

Electric Dipole Moments EDM Search in Storage Rings Studies at COSY OPEDM Summary Appendix

Stage 2: prototype ring

Ring lattice and bending elements

Electric Dipole Moments EDM Search in Storage Rings

Studies at COSY CPEDM

Summary

Appendix 0000000

Stage 3: precision EDM ring

Stage 3: precision EDM ring

500 m circumference ring

- All-electric deflection
- Magic momentum (p = 701 MeV/c)
- Simultaneous CW/CCW beams
- Phase-space cooled beams
- Long spin coherence time (> 1000 s)
- Non-destructive precision polarimetry
- Optimum orbit control
- Optimum shielding of external fields
- Control of residual (intentional) B_r field

"Holy Grail" of storage rings (largest ever conceived)

Electric Dipole Moments	EDM Search in Storage Rings	Studies at COSY	CPEDM	Summary	Appendix
				•	

Summary

Conclusions

Search for charged particle EDMs (p, d, ³*He*)

- EDMs \rightarrow probes of CP-violating interactions
- Matter-antimatter asymmetry
- Measurements of different particles required

Investigations at COSY

- Important achievements accomplished
- First measurement of deuteron EDM ongoing
 - Results expected end 2019

Interest and acknowledgment

- Project acknowledged with ERC-AdG "srEDM"
- Study group established at CERN:
 - Design of a small-scale prototype ring
 - Feasibility study of a pure electrostatic EDM proton ring

Electric Dipole Moments	EDM Search in Storage Rings	Studies at COSY	CPEDM	Summary	Appendix

Appendix

Electric Dipole Moments EDM Search in Storage Rings

Studies at COSY CPEDM Summary

Appendix 000000

Measurement of electron EDM

EDM of neutral particles: measurement concept

Molecules make the highest electric field on electron

Electric Dipole Moments	EDM Search in Storage Rings	Studies at COSY	CPEDM	Summary	Appendix
					000000

ThO metastable state

Omega doublet

- Nearly degenerate (300 kHz) (opposite party)
- Change internal field direction with no lab field change
- V/cm electric field saturates
- Tiny magnetic moment (0.01 μ_B)
- ${}^{3}\Delta_{1}$ long lived (> 1.8 ms)

Electric Dipole Moments	EDM Search in Storage Rings	Studies at COSY	CPEDM	Summary	Appendix
					0000000

Schematic of experiment

Result and impact

ACME II result (Nature 562, 355-360, 2018)

• $|d_e| < 1.1 \times 10^{-29} e \cdot cm$

Electric Dipole Moments	EDM Search in Storage Rings	Studies at COSY	CPEDM 0000000000000	Summary O	Appendix oooooooo		
Measurement of electron EDM							
JEDI Collabo	ration						

JEDI = Jülich Electric Dipole Moment Investigations

- 140 members (Aachen, Daejeon, Dubna, Ferrara, Indiana, Ithaka, Julich, Krakow, Michigan, Minsk, Novosibirsk, St Petersburg, Stockholm, Tbilisi, ...)
- http://collaborations.fz-juelich.de/ikp/jedi

Electric Dipole Moments	EDM Search in Storage Rings	Studies at COSY	CPEDM	Summary	Appendix
					0000000

