Early physics at ALICE

Francesco Prino (INFN - Sezione di Torino) for the ALICE COLLABORATION

I N F N

XXIV Recontres de Physique de La Vallée d'Aoste, La Thuile, March 2nd 2010

ALICE detector

Commissioning phase

Detector calibration and alignment

ITS, TPC

Inner Tracking System (ITS)

- Six layers of silicon detectors
 - \Rightarrow Coverage: $|\eta| < 0.9$
- Three technologies
 - \Rightarrow Pixels (SPD)
 - \Rightarrow Drift (SDD)
 - ➡ Double-sided Strips (SSD)
- Design goals
 - Optimal resolution for primary vertex and track impact parameter
 - ✓ Minimize distance of innermost layer from beam axis (<r>≈ 3.9 cm) and material budget
 - Maximum occupancy (central PbPb) < few %</p>
 - \Rightarrow 2D devices in all the layers
 - dE/dx information in the 4 outermost layers for particle ID in 1/β² region

Layer	Det.	Radius	Length	Resolution (µm)		
	Туре	(cm)	(cm)	rø	Ζ	
1	SPD	3.9	28.2	12	100	
2	SPD	7.6	28.2	12	100	
3	SDD	15.0	44.4	35	25	
4	SDD	23.9	59.4	35	25	
5	SSD	38.0	86.2	20	830	
6	SSD	43.0	97.8	20	830	

ITS operation and calibration

ITS internal alignment

Time Projection Chamber (TPC)

• Characteristics:

- \Rightarrow 85 m³ NeC₂O₂N₂ gas mixture
- ⇒ 557,568 readout channels
- \Rightarrow Maximum drift time = 92 μ s
- ⇒ Many (>90) 3D points (+dE/dx) per track
- Installation in ALICE since 2007
- Running continuously from May to October 2008 and since August 2009
- Calibration:
 - >750 million events (cosmics, krypton, and laser) recorded, with and without B
 - First round of calibrations (dE/dx, momentum, alignment, gain) completed before p-p collisions

Laser event

TPC calibration

p-p data taking in 2009

First collisions: Nov 23, 2009

• LHC conditions:

⇒ Two counter-rotating pilot bunches (~10⁹ p each) at injection energy (Js=900 GeV)

• ALICE conditions:

⇒No magnetic field
⇒Active subsystems:

- ✓ ITS
 ✓ V0
- vv√ FMD
- $\checkmark ZDC$
- ✓ EMCAL

⇒ Trigger:

✓ Coincidence of beam and ≥ 2 firing chips in SPD

- Interaction rate: ~0.11 Hz
- Data sample collected: 284 events (43 minutes)

```
\Rightarrow Sufficient to measure dN_{ch}/d\eta
```


First p-p collision

• First p-p collision in ALICE as seen in the online event

ALICE p-p run in December 2009

• Trigger configuration:

- ⇒ Interaction trigger: SPD or VOA or VOC
- Activated in coincidence with BPTX beam pickups
 - ✓ *BX* with bunches from both sides
 - ✓ control BX with bunch from side A or C only
 - ✓ control BX with no bunches
- ⇒ Single Muon: one muon (any p_T) in muon arm in coincidence with interaction trigger
- Integrated luminosity (stable beams):
 - \Rightarrow 0.9 TeV \rightarrow 470k events \rightarrow 9.5 μ b⁻¹
 - ✓ 360 k with B on, 100 k with B off, 10 k with B reversed
 - \Rightarrow 2.36 TeV \rightarrow 30 k events \rightarrow 0.8 μ b⁻¹
 - \Rightarrow ~ 10% events w/o TPC
- General online systems worked to specs

⇒ + QA from HLT and prompt OFFLINE

Interaction vertex reconstruction

Primary Vertexing in ALICE

- First reconstruction of interaction vertex from SPD tracklets (pairs of points in 2 innermost ITS layers), before tracking
 ⇒ Initiate barrel tracking + multiple scattering correction in muon arm
 ⇒ Monitor the interaction diamond position quasi-online
 ⇒ dN/dη measurement with SPD
- Second reconstruction of interaction vertex from **tracks**
 - \Rightarrow Accurate determination for physics analysis (e.g. D mesons)

Vertexing performance

SPD vertexing efficiency at 900 GeV:

- When a 3D reconstruction fails, an estimate of the sole Z coordinate of the vertex is done
- Combined efficiency close to 100%
- Obtained efficiency in agreement with MC simulations

RMS of vertex reconstructed x,y coordinates fitted to:

$$\sigma(N) = \sqrt{p_0^2 + \frac{p_1^2}{N}}$$

- p0 = diamond transverse size
- p1 = vertex resolution
 - ✓ Found in agreement with Monte Carlo simulations

Pileup detection

- Interactions occurring in a time window of 100 ns (4 bunch crossings) pile-up in the SPD
- The SPD vertexer can be used to tag pile-up events
 - After finding the first vertex, the tracklets which are not pointing to this ("main") vertex are used to check if there are other vertices originating particles

Event display of a pile-up event at 900 GeV

Multiplicity analysis

From first analysis in ACR ...

... to the first LHC physics paper

ALIC

volume 65 · numbers 1–2 · january · 2010

Springer

Multiplicity from SPD

- Multiplicity measurement based on the number of tracklets built on:
 - ⇒ Vertex position
 - Clusters on the 2 SPD layers are matched with a cut defined on
 - ✓ Δφ (bending plane)
 - ✓ Δθ (polar angle)
- Three corrections applied
 - ⇒ Track-to-particle correction
 - ✓ Detector acceptance, trackleting efficiency
 - ✓ Particle decays, conversions, secondary interactions
 - \checkmark Low p_T cut-off
 - \Rightarrow Vertex reconstruction correction
 - \Rightarrow Trigger bias correction

Event selection

- Out of a total of 284 events, 227 events have been used for the analysis
- Event rejection criteria:
 - ⇒Exclude beam-gas, beam-halo
 - ✓ Timing information from V0 scintilators
 - ✓ Ratio between number of tracklets and number of ITS clusters
 - \Rightarrow Exclude events with $|z_{vert}|$ >10 cm
 - ✓ Select the region where vertexing efficiency is maximal and independent of z_{vert}
 - ✓ Allows accurate $dN_{ch}/d\eta$ measurement with SPD in $|\eta| < 1.6$
- Confirmed by visual scan of all events

Arrival time of particles in V0 relative to beam crossing time

Trigger efficiency

• Trigger efficiencies determined from Monte Carlo simulations with detailed detector response:

⇒ PYTHIA 6.4.14 (tune D6T) and PHOJET

⇒ Three process types considered separately

✓ Single Diffractive (SD), Double Diffractive (DD), Non Diffractive (ND)

Trigger Efficiency	SD	DD	ND
PYTHIA	48%	53%	98%
PHOJET	58%	76%	99%

Weighted with relative process fractions from UA5

⇒ R.E. Ansorge, et al., Z. Phys. C33 (1986) 175.

Relative fractions	SD	DD	ND	
UA5	0.153±0.031	0.08±0.05	0.767±0.059	

Total trigger efficiencies for INEL and NSD processes

Trigger Efficiency	INEL	NSD
UA5+PYTHIA	87%	94%
UA5+PHOJET	91%	97%

Pseudorapidity distribution

Only statistical errors shown in the plot

- dN_{ch}/dη in pp at Js=900 GeV consistent with p-p from UA5

 Systematic error: ⇒7.1% (NSD) ⇒7.2% (INEL)
 - dominated by fraction and kinematics of diffractive processes

$dN_{ch}/d\eta|_{max}$ vs. \sqrt{s}

Experiment Model	ALICE pp	UA5 pp [3]	QGSM [42]	PYTHIA [32, 33]			PHOJET [16]
				D6T	Atlas CSC	Perugia-0	
INEL	$3.10 \pm 0.13 \pm 0.22$	3.09 ± 0.05	2.98	2.33	2.99	2.46	3.14
NSD	$3.51 \pm 0.15 \pm 0.25$	3.43 ± 0.05	3.47	2.83	3.68	3.02	3.61

- Result at √s=0.9 TeV agrees with UA5 measurement
- Result at √s=2.36 TeV
 - Small statistical error, same systematic error (7%) as for first paper
 - Consistent with CMS result
- Work in progress on systematics

⇒ Aim: 3-4% syst. err.

Transverse momentum spectra

Charged particle p_T spectra

- ALICE ongoing analysis at Js=900 GeV
 - ⇒SPD vertex
 - ⇒ TPC reconstructed tracks
- p_T reach 0.15-10 GeV/c
- Preliminary corrections for
 - ➡ Efficiency
 - Contamination from secondaries
- Work in progress on systematic errors

<p_>r> vs. multiplicity

• Increase of $\ensuremath{\mathsf{sp}}_{\mathsf{T}}\ensuremath{\mathsf{sp}}$ with mupliticity observed at ISR, SppS and Tevatron

Observable sensitive to QCD phenomenology

- ALICE ongoing analysis:
 - ⇒p_T spectra in bins of multiplicity of TPC tracks
 - Average p_T in 0.3<p_T<4 GeV/c and |η|<0.8</p>
 - NOTE: multiplicity scale from number of TPC tracks not yet corrected for efficiency

Instead of summarizing and concluding ...

• Non-exhaustive list of other ongoing analyses

⇒ Multiplicity distributions at 0.9 and 2.36 TeV

 \Rightarrow p_T spectra of identified hadrons (π , K, p)

 \Rightarrow Strangeness production (K⁰_s, Λ , Ξ , ϕ)

⇒ Baryon-antybarion asymmetry

- Bose-Einstein correlations
- Azimuthal correlations

☞....

Few "work in progress" plots in the next slides

Spectra of identified hadrons

Strangeness

ITS internal alignment - method

- Two independent track-based alignment methods:
 ⇒ Global: Millepede (default method)
 ⇒ Local: iterative method based on residuals minimization
- Data sets: cosmics + first pp collisions (and beam gas)
 Use cocktail of tracks from cosmics and pp to cover full detector surface and to maximize correlations among volumes
- Start with B off, then switch on B (pp)
 - Possibility to select high-momentum (no multiple scattering) tracks for alignment
- General strategy:
 - > Validation of survey measurements with cosmics
 - ✓ Use geometrical survey data as a starting point for track based alignment
 - ⇒ Start with layers easier to calibrate: SPD and SSD
 - ✓ Use a hierarchical approach: start from assemblies of sensitive elements mounted on common mechanical supports and then move to smaller and smaller structures
 - Global ITS alignment relative to TPC (already internally aligned)
 - Finally, inclusion of SDD, which need longer calibration (interplay between alignment and calibration)

✓ SDD calibration parameters (Time Zero and Drift Speed correction) used as free parameters in the Millepede

Primary Vertexing in ALICE

- First reconstruction of interaction vertex from SPD tracklets (pairs of points in 2 innermost ITS layers)
 - ⇒ Computed after local reconstruction, before tracking
 - → Motivation:
 - ✓ Initiate trackers (barrel and muon arm)
 - ✓ Monitor the interaction diamond position quasi-online
 - \checkmark dN/d η measurement with SPD
 - \Rightarrow Method:
 - ✓ Tracklet build-up and selection (based on DCA to beam axis)
 - ✓ Vertex = best common origin of selected tracklets
 - ✓ Two iterations with increasing cut selectivity
 - Independence of possible beam displacements
 - High efficiency: when a 3D reconstruction fails, an estimate of the sole Z coordinate of the vertex can be done with a single tracklet

• Second reconstruction of interaction vertex from tracks

- → Motivation:
 - ✓ Accurate determination for physics analysis (e.g. D mesons)
- \Rightarrow Method:
 - ✓ Track selection (quality cuts + track impact parameter selection)
 - ✓ Vertex finding and fitting
 - \checkmark Two iterations with increasing cut selectivity \rightarrow efficient removal of secondaries

ALICE detector status in 2009

- Central Barrel:
 ⇒ ITS, TPC, TOF, HMPID 100%
 ⇒ TRD 7/18
 ⇒ EMCAL 4/12
 ⇒ PHOS 3/5
- Forward detectors:
 - ➡ V0, T0, PMD, FMD, ZDC 100%
- Muon arm 100%

TOF performance

• Time resolution from cosmics

34

Trigger+Vertex efficiency

- Multiplicity dependence of the combined efficiency to select an event as minimum bias and to reconstruct its vertex in SPD
 - Separated for non-diffractive, single-diffractive, and double-diffractive events
 - \Rightarrow Based on PYTHIA events.

CMS results

36

Strangeness (II)

p_ vs. N_ch from CDF

 Transverse momentum spectra for multiplicity classes and as a function of energy are crucial tests of soft QCD understanding

CDF: Phys. Rev. D 79/2009, 112005