Early Data at LHCb

Ulrich Kerzel (University of Cambridge) On behalf of the LHCb Collaboration

LHC at CERN

proton – proton collisions

ALICE

4 Experiments (ALICE, ATLAS, CMS, LHCb) LHCb: Heavy flavour physics

LHC Operations

... from an experiment's point of view...

Before November 2009: Detector commissioning 0 Cosmic radiation (n.b. LHCb not ideally suited for this...) SPS / LHC beams shot on beam blocker at transfer lines Nov. / Dec. 2009 Commissioning with beam Collisions at $\sqrt{s} = 900 \text{ GeV}$, few collisions at higher energy Feb. 2010: LHC restart March 2010: Collisions at $\sqrt{s} = 7$ TeV Projected integrated luminosity: Ø 2010: ~ 200 pb⁻¹ Ø 2011: ~ 1 fb⁻¹

Shutdown to consolidate LHC for $\sqrt{s} = 10 - 14$ TeV in 2011

Flavour Physics

Standard Model very successful – but cannot be "Ultimate Theory"

- Search for New Physics
- Flavour physics is the key to understanding New Physics 0
 - Directly observe new particles
 - → Measure properties, coupling, etc.
 - Indirectly establish New Physics
 - Sensitive to small effects if the new particles are too heavy

Weak Eigenstates are non-trivial superposition of flavour Eigenstates \rightarrow CKM matrix

- → Popular representation: Wolfenstein
 - \rightarrow triangle in complex (ρ , η) plane

$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} V_{us} V_{ub} \\ V_{cd} V_{cs} V_{cb} \\ V_{td} V_{ts} V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$$

 V_{CKM}

Hick Flavour Physics at the LHC(b)

The "good news":
Large b cross-section

- All B hadrons (B^0 , B_s , B_c , Λ_b) being produced
- High luminosity (LHCb: limit to 2 10³² s⁻²cm⁻¹ to reduce pile-up)

The "challenges":
 Huge inelastic background
 High track multiplicity (>50 tracks/event)
 Need highly efficient and <u>selective</u> trigger

b quark production mainly forward
 Optimise LHCb detector design
 single arm spectrometer

The LHCb Experiment

Vertex Detector (VELO)

- 2 retractable detector halves inside vacuum
 ~ 8mm from beam fully closed,
 - ~30mm retracted during beam injection
- ${\ensuremath{ \circ }}$ 21 stations of Si wafers with R and φ readout

vertex resolution vs #tracks

Excellent agreement between data and predictions from simulation!

LHCb LHCb during 2009 data-taking

Very successful start with colliding beam in 2009 0

- Recorded ~260k pp collisions (beam-gas subtracted, all detectors on) 0
- All sub-detectors operational and included in (most) data-recording 0 → VELO very close to nominal(!) beam pos.: detailed closing strategy
 - detector halves moved in substantially during collision
 - (but not fully closed)
- Tracking: 0
 - ⊘ VELO:
- Ø Particle ID (RICH):
- Calorimeter:
- Muon: 0

99.3% of channels operational Trigger Tracker (TT): 99.5% of channels operational Inner Tracker (IT): 99.5% of channels operational Outer Tracker (OT): 99.3% of channels operational >99 % of channels operational 99.8% of channels operational >99 % of channels operational

Excellent performance of all systems! 0

Big improvement in resolution including the (half-closed) VELO

Impressive agreement between data and simulation

Very clear $\gamma\gamma$ signal Excellent resolution

0

0

0

2009 Data: Muon

Excellent performance of muon system Efficiencies measured >99% Di-muon spectrum agrees well with expectations from simulation → even one J/Ψ candidate passing 3 different selection criteria

Event passes $B \rightarrow J/\psi K_s$ selection – two pions decaying in flight ?

High 2009 Data: $\phi \rightarrow KK$ With Particle ID

Luminosity Measurement

14

 $\mathcal{L} = n_1 n_2 f \frac{1}{A_{eff}}$

n: protons/bunch, f: collision freq.
 A_{eff} effective area calculated from beam size and position
 Van der Meer scan:

Measure and adjust beam

parameters using beam – gas

2009: < 20% (stat. limited)
2010: aim for < %5

Beam Gas Vertices

Kick 2009 Data: Physics Results

Pilot run at 900 GeV offers unique opportunities to settle longstanding issues

- E.g. rel. cross-section measured by UA5 / E735 inconsistent
- LHCb: unique rapidity range: 2 < η < 5
 </p>
 - crucial input to Event Simulation
- LHCb physics topics:
 - Charged track multiplicities
 - ${\it @}$ K_s / Λ cross-section as function of pt, η
 - Ratio strange baryon / strange meson

 - Jet structure

0

Kick LHCb Physics Programme

 LHCb focuses on precision measurements
 \oslash CP violation: e.g. mixing, CKM angle γ Flavour: e.g. spectroscopy, EW physics, soft QCD Highlight few key analyses: Charm physics \odot B_s mixing phase ϕ_s $\odot B_s \rightarrow \mu \mu$ Detailed "road-map": arXiv 0912.4179

Charm

Charm physics offers unique potential to discover New Physics
 Expect large Charm signal sample with first data

- $\sigma(c)$ factor ~7 larger than $\sigma(b)$
 - ~4 10⁶ D*+ → D⁰(K+K⁻)π+ in 100 pb⁻¹
 (compare BaBar: 0.26M PRD80:071103,2009)
- Optimised trigger (L < 10³¹s⁻²cm⁻¹)
 lower pt, impact param. threshold
 improve prompt charm yield by factor 4 w/o loss in B physics
- Sector Extensive Charm physics programme
 - Rare decays

𝔅 E.g. D⁰ → µµ, D⁺ → h⁺ll

OP violation: Currently not observed

𝔅 E.g. D⁰ → K⁺K⁻, π⁺π⁻

Mixing (next slide)

Charm Mixing

First evidence for D mixing in 2007 Average shows significant evidence So No single 5σ measurement yet >20 established models of NP Low mixing rate, >> D lifetime Parameters small (HFAG, EPS09) $> x(no CPV) = 0.811 \pm 0.334 \%$ $> y(no CPV) = 0.309 \pm 0.281 \%$ $= 1.107 \pm 0.217 \%$ O YCP

LHCh

Many measurements in preparation
e.g. y_{CP} via CP eigenstates $y_{CP} = \frac{\tau(D^0 \rightarrow K^+ \pi^-)}{\tau(D^0 \rightarrow K^+ K^-, \pi^+ \pi^-)} - 1$

$$x = \frac{m_2 - m_1}{\Gamma}$$

$$y = \frac{\Gamma_2 - \Gamma_1}{2\Gamma}$$

$B_s \rightarrow J/\psi \phi$

New Physics in Bs mixing: Phase φ_s
 Counterpart to phase in B⁰ → J/ψK
 Disentangle 2 even and 1 odd CP eigenstates

Standard Model prediction: $\phi_s = -2\beta_s = -\arg(V_{ts}^2) = -0.036 \pm 0.002$

Large contributions from NP ?

LHCh

$B_s \rightarrow J/\psi\phi$

20

- LHCb has the potential to discover
 New Physics with 2010/11 data ø Need:
 - Particle ID
 - → φ→KK
 - Flavour tagging → PID crucial ingredient
 - Second Excellent proper-time resolution
 - \rightarrow Excellent resolution of V⁰ decays including VELO

$B_s \rightarrow \mu \mu$

- Extremely rare in Standard Model
 - Show $Br(B_s → \mu\mu) = (3.35 \pm 0.32) 10^{-9}$ (e.g. hep-ex/0604057)
- Br may be greatly enhanced by New Physics, SuSy
- Main experimental challenge:
 - background suppression
 - 🛏 geometric likelihood
 - Handles: vertex separation, mass resolution, pointing constraint

Second Exploit K_s → ππ in 2009 data Tune event simulation "Exercise" analysis with real data

inputs to geom. likelihood:

ππ distance of closest approach

 $\pi\pi$ min. impact par. significance

22

good agreement between 2009 data LHCb simulation (Pythia 6.4 + Geant)

Summary

 LHCb focuses on discovery of New Physics using precision
 measurements in the Heavy Flavour sector OP violation, rare decays, flavour physics, spectroscopy, charm, radiative decays, QCD, ... Ø Very successful start in 2009 All sub-detectors ready and in excellent shape Now calibrate and commission the detector First "standard candles" seen - where they should be Significant amount of data expected from 2010/11 run LHCb immediately competitive with BaBar/Belle and CDF/DO LHCb ready for the data-taking in 2010!

23

Single photon accumulated image taken shining from a projector (the same used for the magn. distortion) on the C-side of RICH2. The light level over the whole surface is ~100 phel per event.

LHCb ГНСр

Trigger for 2010

Few fills at injection energy

> 450 GeV, 2-4 bunches $5 \cdot 10^{10}$ p colliding, $\beta * = 10$ => rate ~(few) 100 Hz

Ramp in energy

> 3.5 TeV, 2 bunches $1 \cdot 10^{10}$ p colliding, $\beta^{*}=10$ => rate ~100 Hz

Squeeze of β*

> 3.5 TeV, 2 bunches $1 \cdot 10^{10}$ p colliding, $\beta^* = 2$ => rate ~500 Hz

Increased bunch charge

> 3.5 TeV, 2 bunches $5 \cdot 10^{10}$ p colliding, $\beta^{*}=2$ => rate ~10 kHz

Increasing number of bunches

 $\Rightarrow 3.5 \text{ TeV}, 19 \text{ bunches } 5 \cdot 10^{10} \text{ p colliding}, \\ \beta^*=2 \qquad => \text{rate} \sim 100 \text{ kHz}$

first few months uminosity ution of

mbias triggers based on Level 0 objects: muon p_T , hadron p_T , Pile-Up System

L0 and HLT optimized for prompt Charm and Beauty + (mbias & random triggers) downscaled

> Prompt charm efficiency increased by more than a factor 4 w.r.t. design settings without loss in b-physics

Optimized for Beauty Physics

When moving to crossing angle and 50 ns bunch spacing we expect $L \sim 1-2 \cdot 10^{32}$ cm⁻²s⁻¹ with ~200 pb⁻¹ in 2010 and ~1 fb⁻¹ in 2011 (~1/2 of a nominal year for LHCb)

LO Trigger

- Identify single particle b-hadron decay products,
 - Final state particles
 (π, K, e, γ, μ) with
 significant p_t,
 - Threshold *p_t* values of a few GeV,
 - Sets of thresholds optimized for physics goals.
- 40 MHz input \rightarrow 1 MHz output

Two stage: 40MHz bunch crossing → 2kHz output
L0 hardware trigger

Subset of detector information
1 MHz output rate

High Level Trigger - software

All detector information available
Multiple layers with increasing complexity
2 kHz output rate (to disk)

Hick New Physics in Charm Mixing

Summary: New Physics in mixing

50		
ous	Model	Approximate Constraint
Ĩ	Fourth Generation (Fig. 2)	$ V_{ub'}V_{cb'} \cdot m_{b'} < 0.5 \;(\text{GeV})$
fer	Q=-1/3Singlet Quark (Fig. 4)	$s_2 \cdot m_S < 0.27 \; (\text{GeV})$
Extra	Q = +2/3 Singlet Quark (Fig. 6)	$ \lambda_{uc} < 2.4 \cdot 10^{-4}$
	Little Higgs	Tree: See entry for $Q = -1/3$ Singlet Quark
		Box: Region of parameter space can reach observed $x_{\rm D}$
SINCE	Generic Z' (Fig. 7)	$M_{Z'}/C>2.2\cdot 10^3~{\rm TeV}$
	Family Symmetries (Fig. 8)	$m_1/f > 1.2 \cdot 10^3 ~{\rm TeV}$ (with $m_1/m_2 = 0.5)$
ă	Left-Right Symmetric (Fig. 9)	No constraint
Extra scalars	Alternate Left-Right Symmetric (Fig. 10)	$M_R > 1.2 \ {\rm TeV} \ (m_{D_1} = 0.5 \ {\rm TeV})$
		$(\Delta m/m_{D_1})/M_R > 0.4 \text{ TeV}^{-1}$
	Vector Leptoquark Bosons (Fig. 11)	$M_{VLQ} > 55(\lambda_{PP}/0.1) \text{ TeV}$
	Flavor Conserving Two-Higgs-Doublet (Fig. 13)	No constraint
	Flavor Changing Neutral Higgs (Fig. 15)	$m_H/C > 2.4 \cdot 10^3 \text{ TeV}$
	FC Neutral Higgs (Cheng-Sher ansatz) (Fig. 16)	$m_H/ \Delta_{uc} > 600 \text{ GeV}$
	Scalar Leptoquark Bosons	See entry for RPV SUSY
	Higgsless (Fig. 17)	$M > 100 { m ~TeV}$
	Universal Extra Dimensions	No constraint
	Split Fermion (Fig. 19)	$M/ \Delta y > (6\cdot 10^2~{\rm GeV})$
SUSY	Warped Geometries (Fig. 21)	$M_1 > 3.5~{\rm TeV}$
	Minimal Supersymmetric Standard (Fig. 23)	$ (\delta^u_{12})_{\rm LR,RL} < 3.5 \cdot 10^{-2}$ for $\tilde{m} \sim 1~{\rm TeV}$
		$ (\delta^{u}_{12})_{\rm LL,RR} < .25$ for $\tilde{m} \sim 1~{\rm TeV}$
	Supersymmetric Alignment	$\tilde{m} > 2 { m TeV}$
	Supersymmetry with RPV (Fig. 27)	$\lambda_{12k}'\lambda_{11k}'/m_{\tilde{d}_{R,k}} < 1.8\cdot 10^{-3}/100~{\rm GeV}$
	Split Supersymmetry	No constraint

- ✓ Considered 21 well-established models
- ✓ Only 4 models yielded no useful constraints
- Consult paper for explicit constraints on your favorite model!

E.Golowich, J. Hewett, S. Pakvasa and A.A.P. Phys. Rev. D76:095009, 2007

Gedalia, Grossman, Nir, Perez arXiv:0906.1879 [hep-ph]

Bigi, Blanke, Buras, Recksiegel, JHEP 0907:097, 2009

Alexey A Petrov (WSU & MCTP)

Extra gauge

Exra dimensions

13

CKM Angle Y

Least known parameter in CKM picture

CKMFitter
α = (21.2 ± 0.9)°
β = (89 ± 4)°
γ = (70 +22-25)°
UTFit
γ = (75 ± 15)°

Several complementary approaches
 Interference of tree diagrams (time independent)
 Time-dependent analysis of B_s → D_s⁻ K⁺
 γ from loop diagrams

$B \rightarrow DK: \gamma$ From Trees

• Analysis methods • GLW: $D \rightarrow K^+K^-$, $\pi^+\pi^-$ Phys. Lett. B 253, 483 (1991), Phys. Lett B 265, 171 (1991) • ADS: $D \rightarrow K^+\pi^-$ Phys. Rev. Lett. 78, 3257(1997), Phys. Rev. D63, 036005 (2001) • 6 measured rates, 5 unknowns • $B^{\pm} \rightarrow D^0(K_s\pi^+\pi^-)K^{\pm}$: full Dalitz analysis

LHCb

LHCb simulation: $B \rightarrow DK vs B \rightarrow D\pi$ No²⁴⁰⁰⁰ $B^* \rightarrow D^0(K^0_s \pi^* \pi^{-})K^*$ B^{*} → D⁰(K⁰₀π^{*}π^{*})K^{*} Sensitivity (nominal year) 20000 3 2000 218000 $B^{\pm} \rightarrow D^{0}(K_{s}^{0}\pi^{+}\pi^{-})\pi^{*}$ $B^{\pm} \rightarrow D^{0}(K^{0}_{s}\pi^{+}\pi^{-})\pi^{+}$ candidate 1500 $\sigma(\gamma) \sim 4^{\circ} - 5^{\circ}$ (tree) 6000 <mark>ទ</mark>ី14000 o $\sigma(\gamma) \sim 9^{\circ} - 13^{\circ}$ (Dalitz) Normalised number of c Ъ **h**12000 Ê 10000 Particle ID crucial 8000 KaonID ε > 95% Normali 6000 4000F [2-100 GeV/c] 2000 π/K misID < 4% 5200 5400 5600 5200 5400 5600 Reconstructed B^{*} mass [MeV/c²] Reconstructed B* mass [MeV/c²]

Charmless B Meson Decays

- \odot Sensitive to γ (from interference)
 - Mixing
 - Tree / Penguin diagrams
 - Sensitivity: $\sigma(\gamma) \sim 10^{\circ}$
 - Fit time dependent CP asymmetries
- Lifetime measurements sensitive to New Physics
 - \odot Extract information about $\Delta\Gamma$,...

- Ideal for "first physics"
 - Early BR and asymmetry measurements
 with > 500 pb⁻¹

Particle ID crucial

LHCb

$B \rightarrow K^* \mu \mu$

32

- Suppressed loop decay
- - Both neutral and charged NP
 replace W[±], Z/γ, u/c/t
 - AFB(s) distribution:
 - Zero crossing and shape
- → Determine ratio of Wilson coefficients C7/C9
- Sected statistics:
 - \oslash 0.1 fb⁻¹ ~ 300 events
 - ⇒ competitive with BaBar, Belle, CDF in 2010!

$B \rightarrow K^* \mu \mu$

black: LHCb red: BaBar blue: Belle green: CDF assuming $\sqrt{s} = 7$ TeV LHCb very quickly competative with the other experiments!

expected sensitivity for 1.0 fb⁻¹ (2010/11 data)

Particle ID

Second Excellent PID required for ambitious physics programme:

- $\circ \mu$, e, γ : muon chambers and calorimeter
- $\pi/p / K : \underline{R}ing \underline{I}maging \underline{Ch}erenkov Detectors + Tracker$
 - Cherenkov angle $(\cos\theta_c = 1/\beta n)$ and momentum \rightarrow PID
 - Tune radiator materials to cover wide momentum range

e. g. charmless two-body B decays

Silica Aerogel (2-10 GeV/c)
 C₄F₁₀ (10-60 GeV/c)
 CF₄ (16-100 GeV/c)

Kick 2009 Data: RICH alignment

Misalignment of Cherenkov ring centres vs tracks results in sinusoidal variation of Cherenkov ϕ around the ring

....

Flavour Physics

 $\rho = 0.1454 \pm 0.022$ $\eta = 0.342 \pm 0.014$ $\alpha = 92.0 \pm 3.2^{\circ}$ $\beta = 22.0 \pm 0.8^{\circ}$ $\gamma = 65.6 \pm 3.3^{\circ}$

(many more ... worth a summary talk on its own...)

5+ years later ?

LHCb physics

Dedicated B physics experiment

Covering all aspects of Charm and Bottom physics
 Cross-section, rare decays, lifetimes, spectroscopy, ...
 Higher cross-section than FNAL, better detector, trigger
 more B (D) per fb⁻¹

Channel	1 fb ⁻¹ at LHCb = fb ⁻¹ at Tevatron	
$D^0 \rightarrow K\pi$	20	50M / 2fb ⁻¹ at LHCb 0.5M / 0.35fb ⁻¹ at CDF
B→ hh	30	200k / 2fb ⁻¹ at LHCb 6.5k / 1fb ⁻¹ at CDF
$B^+ \rightarrow J/\psi K^+$	60	1.7M / 2fb ⁻¹ at LHCb 3.4k / 0.25fb ⁻¹ at CDF
$B_s \rightarrow D_s \pi$	10	120k / 2fb ⁻¹ at LHCb 5.6k / 1fb ⁻¹ at CDF

$B_s \rightarrow hh Yields$

Mode	Yield	B/s
$B^0 \rightarrow \pi\pi$	36k	0.5
$B_s \rightarrow KK$	36k	0.15
$B^0 \rightarrow K\pi$	140k	<0.06
$B_s \rightarrow \pi K$	10k	1.9

untagged, per nominal year

LHCb - Key Analyses

Bs mixing phase ϕ_s very small in SM \Rightarrow potentially large contributions from NP Analyses: $B_s \rightarrow J/\psi\phi$, $J/\psi\eta$, $D_sD_s \parallel c\tau(B) \rightarrow \Delta\Gamma$...

CKM angle y

Tree Level: $B_s \rightarrow D_s K$ $B_d \rightarrow D^{(*)} \pi$ $B^{\pm}, B_d \rightarrow D^{(*)} K^{(*)}$, with D^0 decaying to:2 bodies: πK , KK, $\pi \pi$ 3 bodies: $KS \pi\pi$, KS KK, $KS K\pi$ 4 bodies: $K\pi\pi\pi$, $KK\pi\pi$

Penguin Level: $B_s \rightarrow KK, B_d \rightarrow \pi\pi$ \Rightarrow PID paramount U spin approach

First Collisions in 2009

8.12. 2009 4:02:23 Run 63567 Event 134 bId 2545

