Recent Results and Future Prospects from MINOS

Jonathan M. Paley for the MINOS Collaboration Argonne National Laboratory

Les Rencontes de Physique de la Vallée D'Aoste La Thuile, March 2, 2010

The MINOS Collaboration

Argonne – Arkansas Tech – Athens – Benedictine – Brookhaven – Caltech – Cambridge – Campinas – Fermilab – Harvard – IIT – Indiana – Minnesota–Twin Cities – Minnesota–Duluth – Oxford – Pittsburgh – Rutherford – São Paulo – South Carolina – Stanford – Sussex – Texam A&M – Texas–Austin – Tufts – UCL – Warsaw – William & Mary

Goals of the MINOS Experiment

* Make precise measurement of Δm^2 and $sin^2(2\theta)$ via:

P (
$$\nu_{\mu}$$
 → ν_{μ}) = 1 − sin² (2θ) sin² (1.27 Δm² L/E)

* Secondary goals:

 $V_e \longrightarrow$

- * Search for sterile neutrinos
- * Search for subdominant $v_{\mu} \rightarrow v_{e}$
- * CPT tests
- * Atmospheric neutrino and cosmic ray studies

The MINOS Experiment

Soundan

* Far Detector

*MISeso4 KT

735 km from target wiscons

Near Detector * 0.98 kT * 1.04 km from target

Fermilab Chicago

Both detectors are magnetized

age 2008 TerraMetric 2008 Europa Technologies

2008 Tele Atlas

Identifying Events in MINOS

v_{μ} CC event

 v_e CC event

υz υz ٧Z

Long µ track + shower at vertex

Short event with EM shower profile.

NC event

Short, diffuse event.

 E_{μ} determined from curvature and/or range, E_{shower} determined from MC tuned to external data.

v_{μ} CC Analysis

Precision measurement of Δm^2 and $\sin^2(2\theta)$

ν_{μ} CC Event Selection

- CC/NC separation achieved via a kNN event selection based on:
 - * Track length
 - * Mean pulse height
 - * Fluctuation in pulse height
 - * Transverse track profile

- Cut on separation parameter
 maximizes CC selection efficiency
 and minimizes NC background.
- Good agreement between data and MC above the CC/NC separation parameter cut.

Expected Far Detector Spectrum

Near detector spectrum is extrapolated to the far detector.
Use MC to provide energy smearing and acceptance corrections.

FD Energy Spectrum/Performing the Fit

* FD energy spectrum is only looked at after performing: * low-level data quality checks * procedural checks * 848 events observed in the FD * 1065 \pm 60 expected with no oscillations

* We fit the energy distribution to the oscillation hypothesis and include nuisance parameters to account for systematics.

Contours

 $P(v_{\mu} \rightarrow v_{\mu}) = 1 - \sin^2(2\theta) \sin^2(1.27 \Delta m^2 L/E)$

Contours

P ($v_{\mu} \rightarrow v_{\mu}$) = 1 - Dietails in² (1.27 $\Delta m^2 L/E$) 4.0Phys. Rev. Lett. 101, (2.43 ± 0.13) x 3.5 0.6 Č 131802 (2008) eV² (68% CL) $* \sin^2(2\theta) > 0.90 (90\% CL)$ Work is in progress on analysis of larger data set (~2x) with significant improvements in reconstruction, PID and background reductions.⁷⁷ $sin^2(2\theta)$

NC Analysis

The search for sterile neutrinos

NC Event Selection in the ND

- * Since NC events probe active flavors, a depletion of NC events in the FD can only be explained by v_s .
- * We select reconstructed "shower-like" (short) events that fall within a fiducial volume.

FD NC Energy Spectrum + Fit Models

Jonathan M. Paley, Argonne National Laboratory

FD NC Energy Spectrum + Fit Models

Future Prospects of v_s Analysis

 * A ~2x larger data set (7 x 10²⁰ POT) is currently being analyzed, and improvements in several systematics are expected.

ve CC Analysis

The search for v_e appearance

ve Appearance - Challenging Analysis!

- * Measurement dominated NC and v_{μ} CC backgrounds.
- We see a very large discrepancy between selected v_e ND MC and data events.
- Two data-driven methods have been developed to resolve the MC/data difference.

v_e 3x10²⁰ POT Results

- * We observe 35 events, and expect 27 \pm 5 (stat) \pm 2 (syst) events.
- * Results are 1.5 σ high; sin²(2 θ_{13})=0 is included at the 92% level.

v_e 3x10²⁰ POT Results

* We observe 35 events, and expect 27 \pm 5 (stat) \pm 2 (syst) events.

* Results are 1.5 σ high: sin²(2 θ_{13})=0 is included at the 92% level. Argonne Jonathan M. Paley, Argonne National Laboratory

NATIONAL LABORATORY

Forthcoming Updated v_e Results

* Improved analysis of larger data set is now complete:

- * ~2x larger data set
- * Systematics reduced from 10% to 5%
- * Results will be presented in April.

Conclusions

- Latest ν_µ CC analysis results (3.36 x 10²⁰ POT) provide world's best determination of Δm²_{atm}:
 ★ Δm² = (2.43 ± 0.13) x 10⁻³ eV² (68% CL),
 ★ sin²(2θ) > 0.90 (90% CL)
- * Sterile neutrino analysis results (3.18 x 10²⁰ POT) indicate no strong hint of a fourth, inactive neutrino.
- * Results of search for v_e appearance via θ_{13} (3.14 x 10^{20} POT) are consistent with Chooz limit.
- * Updated results based on improved statistics (x2) and reduced systematics will be forthcoming from MINOS within the next few months – stay tuned!

Future Outlook for Fermilab

- * Lots going on!
- * MINERvA
 - * precision neutrino cross-sections
 - * running, construction complete
- * Liquid Argon Program:
 - * ArgoNeut (small scale R&D), already seen beautiful neutrino events
 - ★ MicroBooNE (170 ton LAr TPC, construction complete ~2012)
- * NOvA
 - * off-axis long-baseline experiment, θ_{13} , δ_{CP} & mass-hierarchy
 - * construction of FD to begin later this year
 - * prototype detector to be built this summer
 - * data in 2013, after 700 kW accelerator upgrade
- * Long-baseline Neutrino to DUSEL (1300 km, first stage approval from DOE)
- * Muon & Kaon Program:
 - * Mu2e (comparable sensitivity to COMET, first stage approval from DOE)
 - * $(g-2)_{\mu}$ /EDM under consideration
 - ***** K → π⁺ νν

Backup Slides

Neutrino Program at FNAL

Predicting the Flux

- * MINOS uses Fluka MC to predict the v flux.
- * Uncertainty on flux is ~30%
 due to lack of hadron
 production data.
- * To improve our data-to-MC agreement, we tune the Fluka MC to ND energy spectra of different beam configurations.
- These beam-reweighted
 spectra are used in all
 analyses discussed today.

Producing Neutrinos at the Main Injector

Neutrinos are produced from secondary mesons created in 120 GeV/c p + graphite target interactions.
The secondary mesons are focused by two magnetic horns; ν beam energy is tunable by moving target position longitudinally w.r.t. the horn positions.
In LE beam configuration, beam is composed of 92.9% ν_μ, 5.8% ν_μ, and 1.3% ν_e and ν_e.

v_{μ} CC/NC Separation

- * CC/NC separation achieved via a kNN event selection based on:
 - * Track length
 - * Mean pulse height
 - * Fluctuation in pulse height
 - * Transverse track profile

Jonathan M. Paley, Argonne National Laboratory

v_{μ} CC Event Selection

* Cut on separation parameter maximizes CC selection efficiency and minimizes NC background. * Good agreement between data and MC above the CC/NC separation parameter cut. Argunne

Far Detector Low-level Data Quality Checks

* FD energy spectrum is only looked at after performing:
* low-level data quality checks
* procedural checks

Arg MINOS Preliminary track vertex x/m

30

events

10²

10

ND Distributions After Making PID Cut

Systematic Uncertainties

Systematics After the Fit

		Best fit		Shift from	
				nominal best fit	
Systematic	Shift	$\Delta m^2_{\rm atm}$	$\sin^2(2\theta_{23})$	$\Delta m^2_{\rm atm}$	$\sin^2(2\theta_{23})$
		$/10^{-3} eV^2$		$/10^{-3} eV^2$	
Nominal		2.385	1.000		
Far detector	-4%	2.465	1.000	+0.080	0.000
normalisation	+4%	2.305	1.000	-0.080	0.000
NC	-50%	2.390	1.000	+0.005	0.000
background	+50%	2.385	0.996	0.000	-0.004
Overall shower	-10%	2.315	1.000	-0.070	0.000
energy scale	+10%	2.450	1.000	+0.065	0.000
Relative shower	-2.2%	2.395	1.000	+0.010	0.000
energy scale	+2.2%	2.375	1.000	-0.010	0.000
Track energy	-2%	2.355	1.000	-0.030	0.000
from range	+2%	2.415	1.000	+0.030	0.000
FD Track energy	-4%	2.370	1.000	-0.015	0.000
from curvature	+4%	2.400	1.000	+0.015	0.000
SKZP beam	-1σ	2.375	1.000	-0.010	0.000
errors	$+1\sigma$	2.390	1.000	+0.005	0.000
Total ν_{μ} CC	-3.5%	2.385	1.000	0.000	0.000
cross section	+3.5%	2.385	1.000	0.000	0.000

Table 4: The best fits to sets of systematically shifted data (the fit constrained to $\sin^2(2\theta_{23}) \leq 1.0$), and the shifts of the best fit parameters from the unshifted case.

Sensitivity

* Final contour is a bit smaller than the predicted sensitivity because $sin^2(2\theta)$ falls in the unphysical region. * A study shows that 26.5% of unconstrained fits have a fit value of $sin^{2}(2\theta) \geq 1.07$ * Feldman-Cousins study indicates that our contours are slightly conservative.

Alternative Hypotheses

NC Event Selection in the FD

Measured Near Detector Spectrum

NC event selection efficiency is 90%, purity is 60%.

ve Data-Driven Background Studies

* Horn On/Off – constrain the relative ratios of NC and ν_{μ} CC background events in two different beam configurations.

* Muon removed hadron showers from v_{μ} CC (MRCC).

MINOS Antineutrino Analysis

- * MINOS is unique in its ability to separate ν_{μ} from ν_{μ} events.
- * Do v_{μ} and v_{μ} oscillate the same way? Test of CPT.
- Do ν_µ oscillate to ν_µ? Possible
 via some exotic beyond-SM
 processes and/or Majorana
 nature of neutrinos.
- * NuMI beam consists of ~7% $\nu_{\mu}.$
- Most ν_µ are higher energy and come from low p_T π⁻'s that travel straight through the focusing horns; all other π⁻'s are defocused and don't reach the decay pipe.

MINOS Antineutrino Results

- Events are selected based on track length, pulse height fraction in track, pulse height per plane, track fit charge sign significance, and track curvature.
- ✤ Observe 42 events in the FD
- Predicted w/ CPT conserving oscillations: 58.3 ±7.6 (stat) ±3.6 (syst.)
- Predicted w/ no oscillations:

64.6 ± 8.0 (stat) ± 3.9 (syst.)

- MINOS excludes at maximal mixing:
 (5.0 < Δm² < 81)x10⁻³ eV² (90% CL)
- * Null oscillation hypothesis excluded at 99%.
- * CPT conserving point from ν_{μ} analysis falls within 90% contour.

MINOS Antineutrino Results

* MINOS observes **no** excess of v_{μ} events in the FD.

- * Events are selected based on track length, pulse height fraction in track, pulse height per plane, track fit charge sign significance, and track curvature.
- ✤ Observe 42 events in the FD
- Predicted w/ CPT conserving oscillations:
 58.3 ±7.6 (stat) ±3.6 (syst.)
- * Predicted w/ no oscillations:

64.6 ± 8.0 (stat) ± 3.9 (syst.)

Other Finalized Analyses

- * "Sudden stratospheric warmings seen in MINOS deep underground muon data": High-energy cosmic muon rate is strongly correlated to temperature changes in the upper atmosphere. MINOS has shown that (under)ground-based high statistics cosmic muon measurements are a new tool to be used in tracking meteorological phenomena in the upper atmosphere.
- * "Testing Lorentz Invariance and CPT Conservation with MINOS
 Near Detector Neutrinos": search for a sidereal signal in the MINOS
 ND. Upper limits set on individual SME Lorentz and CPT violating terms.
- * "Observation of deficit in NuMI neutrino-induced rock and nonfiducial muons in MINOS far detector and measurement of neutrino oscillation parameters"

