Mike Lamont for the LHC commissioning team

Turning on the LHC: commissioning with beam and the outlook for 2010

Prep: beam tests through the years

2008: FIRST BEAM TO LHC

2009: FIRST IONS TO LHC

2008: FIRST BEAM TO IR3

2009: Sector test

2008: SEPT 10

Prep: dry runs and machine checkout

20 th Nov	injection of both beam – rough RF capture
21 st Nov	Beam 1 circulating
22 nd Nov	Beam 2 circulating
23 rd Nov	First pilot collisions at 450 GeV First trial ramp
26 th Nov	Pre-cycle established – excellent reproducibility Energy matching
29 th Nov	Ramp to 1.08 TeV and then 1.18 TeV
30 th Nov	Solenoids on
1 st – 6 th Dec	Protection qualified at 450 GeV to allow "stable beams"
6 th Dec	Stable beam @ 450 GeV
8 th Dec	Ramp 2 beams to 1.18 TeV – first collisions
11 th Dec	Stable beam collisions at 450 GeV with high bunch intensities: 4 x 2 10^10 per beam

14 th Dec	Ramp 2 on 2 to 1.18 TeV - quiet beams - collisions in all four experiments
14 th Dec	16 on 16 at 450 GeV - stable beams
16 th Dec	Ramped 4 on 4 to 1.18 TeV - squeezed to 7 m in IR5 - collisions in all four experiments
16 th Dec	End of run

- 3 days first collisions at 450 GeV
- 9 days first ramp to 1.2 TeV
- 16 days stable beams at 450 GeV
- 18 days two beams to 1.2 GeV & first collisions

General agreement that this wasn't bad

Nominal batch from the SPS: 288 bunches of 1.15 e11 protons at 450 GeV

We injected a single bunch of 2 e10

Delicate process

- □ We will sling around a lot of beam during this process
- □ Complex dance of hardware, timing, RF, interlocks etc.
- Have to carefully position collimators and other protection devices to make sure we catch any losses
- Issues with BLMs triggering the beam interlock system due to fast losses during the injection process
- Full program of beam based checks performed
- Generally impressive, clearly benefits from experience gained during injection tests.
- However, for the moment one would worry about routinely injecting unsafe beam.

TT40 Damage during 2004 High Intensity SPS Extraction / <u>Goddard</u>, <u>B</u> ; <u>Kain</u>, V ; <u>Mertens</u>, V ; <u>Uythoven</u>, J ; <u>Wenninger</u>, J

Or what you can do with 2.9 MJ

Figure 4. Damage observed on the inside of the vacuum chamber, on the beam impact side. A groove approximately 110 cm long due to removed material was clearly visible, starting at about 30 cm from the entrance.

During high intensity extraction on 25/10/04 an incident occurred in which the vacuum chamber of the TT40 magnet QTRF4002 was badly damaged.

The beam was a 450 GeV full LHC injection batch of 3.4 10¹³ p+ in 288 bunches, and was extracted from SPS LSS4 with the wrong trajectory

02-03-2010

LHC commissioning & plans

= 4.4 e12 at 3.5 TeV₈

Measurement and control of key beam parameters

- □ Orbit, tune, chromaticity, coupling, dispersion
- Beam loss, Beam size
- Energy matching
- □ Aperture checks
- Experiments' magnets
 - □ Solenoids & dipole –on and corrected
- Two beam operation both with and without bumps
- Optics checks
- Full program of polarity checks of correctors and BPMs

Performance of hardware, instrumentation and software was impressive

Good preparation – fast problem resolution

8 kHz line, broad frequency "hump", and other spectra perturbations:

□ Reduction of beam life-time, emittance blow-up, ...

Maybe not of direct interest to this audience but this sort of thing can give you a real headache

Vertical emittance blow-up – beam 2

BSRT B2 VERT vs BCT 11-12-2009

- Beam clearance seems to be OK
- Some measured bottlenecks agree with model predictions using measured functions.
- Aperture is out of budget due to the large beta beating
- Correcting beta beating (optics) seems mandatory at 450 GeV

- Man was never meant to do collisions at 450 GeV (in the LHC at least)
- Full program of machine protection, collimation, aperture and LBDS checks allowed "stable beams" to be declared.
- Multi-bunch and higher intensities achieved
 16 bunches total 1.85 x 10¹¹
- Luminosity scans tested successfully
- Lots of events collected

□ 6 reasonably happy experiments

After 20 days commissioning

8 ramp attempts

	Date	Beam	Energy [GeV]	Comment
1	24/11/09	1	560	Tunes
2	29/11/09	1	1043	1/3 integer
3	30/11/09	1/2	1180	No full precycle No feedback
4	8/12/09	1/2	1180	B1 lost after 3 minutes at top energy. Feedback on B2. Atlas saw collisions
5	13/12/09	1/2	800	Feedback on both beams from here Lost B2 – BPM interlock
6	14/12/09	1/2	1180	1 hour "quiet beams" – collisions in all 4 experiments
7	15/12/09	1/2	1180	Beam lost to rogue real-time packet
8	16/12/09	1/2	1180	Squeeze/collisions

Ramp looked good (and reproducible)

Both tune feedback and feed-forward operational

Encouraging

One attempt in CMS: from 11 to 7 m.

- First beam tests of betatron squeeze were successful!
 - □ Mechanics of the squeeze works well.
 - □ Good agreement with the expected beta values.
- Some issues were identified and are being addressed
 - □ Not the smoothest night shift ever seen in the CCC

Feedbacks:

- □ Orbit feedback will be needed as expected,
- □ If simulations are confirmed, tune feedback seem less critical.

- The knowledge of the magnetic model of the LHC is remarkable and has been one of the key elements of a very smooth beam commissioning
- Huge parameter space, mistakes made, lessons learnt etc but...
- Tunes, energy matching, optics close to the model already
- Some discrepancies being hunted down (450 GeV particularly)
- Bodes very well for the future.

Largest momentum offsets by sector:

□ -0.27 per mil in sector 56 / beam1

□ +0.32 per mil in sector 78 / beam2

... in case of asynchronous beam dump

- \Box TCDS (fixed) 6 m long diluter protects extraction septum
- TCDQ (mobile) 7 m long diluter kept at about 7-8 σ from the beam, at all times

Beams for physics dumped, at the right place! 450 GeV

Beam dumps, 16 bunches + pilot, 14/12/09 around 21:00 BTVDD image = position on beam dump block TDE Comparison with calculated positions from measured kicker magnet waveforms.

The beam dumping systems worked very well

Only real failures were the synchronous-asynchronous dumps: solved after firmware upgrade

Excellent initial beam based commissioning following careful preparation and tests

- Full program of beam based positioning
- System works as designed.

□ Expected cleaning and leakage processes seen.

- Possible to verify passive protection: losses at primary collimators.
- Hierarchy established and respected in tests
- Collimation setup remained valid over 6 days, relying on orbit reproducibility and optics stability
- Even the Roman pots got a run out

This and the beam dump are what stands between your silicon and 7 TeV protons (eventually).

Machine Protection System

Provides the mechanism to dump the beam in around 3 turns if anything out there decides it's had enough

- Mission critical backbone
 - Beam Interlock System
 - Safe Machine Parameters
 - □ Plus inputs to/from other systems (e.g. timing, BCT)
- A large multitude of user inputs
- The beam driving a subtle interplay of:
 - □ LBDS, Collimation, protection devices, RF...
 - □ Instrumentation (BLMs, BCT, BPMs...)
 - □ Aperture
 - Optics

Careful testing before beam

Full set of beam based tests

Clearly the critical path

- Beam Position Monitors
 - Excellent performance
 - \Box Very stable orbit (V drift ~ 15µm/h)
- Beam Loss Monitors
 - BLMs correctly removes the BEAM PERMIT signal if measurements are over threshold. No reliability issues observed.
- Profile monitors
 - Synchrotron light, wire-scanners operational
 - Base-Band-Tune (BBQ) system was a work horse from day one giving tune, chromaticity, coupling.

The Enabler

Excellent

Availability during initial commissioning

2010

1st quarter – restart

2nd quarter – physics start-up & LHC

3rd quarter – production running

4th quarter – ions

Hardware commission to 3.5 TeV

- □ New quench protection system (nQPS)
- □ Nearly there...
- Beam commissioning continued
 - □ Through to colliding, safe, stable, squeezed beams
- Consolidation & pilot physics
- Phased intensity increase and associated machine protection qualification
 - □ Establish secure and reproducible operations and fully field test
 - □ Move very, very carefully
- Consolidation & physics

Beam commissioning strategy 2010

••• Timeline to first collisions - estimate

Phase	Day s	
Circulating beams	2	Essential checks
450 GeV re-commissioning	7	Injection, tune, Q', C-, orbit, collimators, LBDS, instrumentation
450 optics checks	3	Beating, energy matching optimization
450 two beams	1	bumps as standard set-up, adjust TDI etc
450 GeV collisions	1	experiments on at 450 GeV
Ramp to 3.5 TeV	5	commission essential machine protection, experiments' dipoles on in ramp, orbit and tune feedback
3.5 TeV	7	machine protection (beam dumps, collimation etc.) optics
Pilot collisions un-squeezed	3-5	Safe beams at 3.5 TeV, test procedures etc.
Commission squeeze	4	feedbacks, collimation, aperture, bumps, machine protection checks, beam dumps etc.
Collisions squeezed – safe, stable beams	7	Stable beams up to safe beam limit

Main challenge will be learning to operate safely with destructive beams

Approved steps to 2 MJ

			· · · · ·			
Stage	Ib	Nb	MJ	Lumi	Days	Int Lumi
4 pilots	5.00E+09	4	0.01	4.8E+27	14	1.44E-03
4 bunches	2.00E+10	4	0.05	7.6E+28	14	2.31E-02
4 bunches	5.00E+10	4	0.11	4.8E+29	14	0.1
8 bunches	5.00E+10	8	0.22	9.5E+29	14	0.3
4x4 bunches	5.00E+10	16	0.45	1.9E+30	14	0.6
8x4 bunches	5.00E+10	32	0.9	3.8E+30	30	2.5
43x43	5.00E+10	43	1.2	5.1E+30	14	1.6
8 trains of 6 b	8.00E+10	48	2.2	1.3E+31	14	4.0
				days	128	9.1
				months	4.3	
0.25						
1.00E-24						
1.00E-12					Simple Hubn	er Factor
50 ns trains	8.00E+10	96	4.3	2.7E+31	150	86.5

pb⁻¹

Step	Phase	E [TeV]	N	Fill scheme	I/I ^{nom} [%]	E _{beam} [MJ]	β* [m] IP1/2/5/8	L (IP1/5) [cm ⁻² s ⁻¹]	Run time (indicative)
1	Beam	0.45	5×10^{10}	2×2	0.03	0.0072	11/10/11/10	2.6×10^{27}	
2	commissioning, safe beam limit		2×10 ¹⁰	2×2	0.01	0.02	11/10/11/10	7×10 ²⁷	
3	Beam commissioning, safe beam limit, squeeze		2×10 ¹⁰	2×2*	0.01	0.02	2/10/2/2	3.6×10 ²⁸	Days
4	Bunch trains from SPS		3×10 ¹⁰	43×43	0.4	0.7	2/10/2/2	1.7×10^{30}	Months
5	Increase		5×10^{10}	43×43	0.7	1.2	2/10/2/2	4.8×10^{30}	
6	intensity	35	5×10^{10}	156×156	2.4	4.4	2/10/2/2	1.7×10^{31}	
7	mensity	5.5	7×10^{10}	156×156	3.3	6.1	2/10/2/2	3.4×10^{31}	
8	Bring on crossing angle, truncated 50 ns.		7×10 ¹⁰	50ns - 144**	3.1	5.7	2.5/3/2.5/3	2.5×10 ³¹	
9			5×10 ¹⁰	50ns - 288	4.4	8.1	2.5/3/2.5/3	2.6×10 ³¹	Months
10	Increase intensity		7×10 ¹⁰	50ns - 432	9.3	17	2.5/3/2.5/3	7.5×10 ³¹	
11			7×10 ¹⁰	50ns - 796	17.1	31.2	2.5/3/2.5/3	1.4×10 ³²	

3.5 TeV: run flat out at ~100 pb⁻¹ per month

	Nb	ppb	Total Intensity	MJ	beta*	Peak Lumi	Int Lumi per month [pb ⁻¹]		
50 ns	432	7 e10	3 e13	17	2.5	7.4 e31	~63 (34)		
Pushing intensity limit	796	7 e10	5.1 e13	31	2.5	1.4 e32	~116 (63)		
16% nominal									

Hope to be able to deliver around 1 fb⁻¹

It still works!

Circulating beams re-established last weekend

- A lot of hard work over the years has enable a truly impressive period of initial commissioning with beam.
- Initial indications are that the LHC:
 - □ is reproducible;
 - magnetically well understood;
 - optically in good shape;
 - is armed with a mighty set of instrumentation, software, and hardware systems.
- Lots still to sort out, in particular...
- Operations, controls, instrumentation etc. have the capability to unnecessarily stress the machine protection system – issues must be resolved.

Long way to go before we are ready to go much beyond the safe beam limit

- Starting now ~4 weeks to establish stable, safe beams at 3.5 TeV and provide first collisions
- Extended running period around the safe beam limit:
 With blocked MD periods as required
- A very careful stepwise increase in intensity through the year with each step up in intensity to be followed by an extended running period
- Aiming for 10^{31 -} 10³² cm⁻²s⁻¹ in 2010 and hopefully between 100 – 200 pb⁻¹