

Start up and first physics results with the ATLAS Detector

Andreas H. Wildauer IFIC Valencia on behalf of the ATLAS collaboration

La Thuile, Aosta Valley, Italy February 28 - March 6, 2010

funded by CPAN

- The Large Hadron Collider
- The ATLAS Detector
- Detector performance plots of 2009 data taking
- Charged-particle multiplicities in p-p interactions at a center of mass energy of 900 GeV
- Outlook/Conclusion

- Proton-proton collider
- 27 km circumference
- At 4 interaction points, detectors measure the outcome of the collisions:
 - ATLAS, CMS
 - Alice, LHCb

	Design	Start Up
Energy (c.m.)	14 TeV	900 GeV (2.36 TeV)
Luminosity	10 ³⁴ cm ⁻² s ⁻¹	~7 x 10 ²⁶ cm ⁻² s ⁻¹
Bunches/Beam	2808	4 (2 colliding in ATLAS)

- A Toroidal LHC ApparaturS: multi-purpose particle detector to cover large range of physics measurements
- mass ~ 7000 tons
- 25m high
- 46m long
- ~100 million
 electronic
 channels
 (most in the
 pixel and ID)

Inner Detector

The ID provides around 3 pixel, 8 SCT and 30 TRT measurements per charged track at $\eta = 0$. so Coverage: $|\eta| < 2.5$ (2.0 for TRT) Allows for accurate track and vertex reconstruction. Resolution goal: $\sigma_{pT}/p_T = 0.05\% p_T \oplus 1\%$

- Measures energy deposit
 - very important to measure missing transverse energy
- Electromagnetic (LAr): $\sigma_E / E = 10\% / \sqrt{E} \oplus 0.7\%$
 - Precision measurements of photons and electrons
 - $|\eta|$ coverage up to 4.9
- Hadronic (Tile):
 - Measure energy deposit of hadrons
 - $|\eta|$ coverage up to 1.7

$$\sigma_E/E=50\%/\sqrt{E}\oplus 3\%$$

- Precision tracking chambers and trigger chambers
 - Monitored drift tubes
 - Cathode drift chambers
 - Thin-gap chambers
 - Resistive plate chambers
- $|\eta|$ coverage up to 2.7
- Magnetic field produced by 3x8 air-core toroids
- magnetic field 0.5 T

```
\sigma_{p_T}/p_T=10% at p_T = 1 TeV
```


- Primary physics trigger in 2009:
 - Beam pickup timing devices (BPTX)
 - Electrostatic beam pickup located at \pm 175 m from interaction point
 - Minimum Bias Trigger Scintillators (MBTS)
 - located at \pm 3.56m in z from the interaction point
 - 32 scintillating counters covering $2.09 < |\eta| < 3.84$
- Average event rate of collision trigger (MBTS + BPTX): $\sim 10 \text{ Hz}$

- 20 Nov 2009: single beam splash
- 23 Nov 2009: First collisions 900 GeV
- 6 Dec 2009: First collisions with stable beam. Full detector switched on!
- 8 Dec 2009: First collisions at 2.36 TeV
- 16 Dec 2009: end of 2009 data taking

Max peak luminosity seen by ATLAS : $\sim 7 \times 10^{26} \text{ cm}^{-2} \text{ s}^{-1}$

Recorded data samples	# of events	Integrate	ed Luminosity
Total	917.000	20 µb ⁻¹	(syst. uncertainty
900 GeV with Full Detector On	538.000	12 μb ⁻¹	up to 30%)
2.36 TeV (world record)	34.000		

Subdetector	Number of Channels	Operational Fraction
Pixels	80 M	97.9%
SCT Silicon Strips	6.3 M	99.3%
TRT Transition Radiation Tracker	350 k	98.2%
LAr EM Calorimeter	170 k	98.8%
Tile calorimeter	9800	99.2%
Hadronic endcap LAr calorimeter	5600	99.9%
Forward LAr calorimeter	3500	100%
MDT Muon Drift Tubes	350 k	99.7%
CSC Cathode Strip Chambers	31 k	98.4%
RPC Barrel Muon Trigger	370 k	98.5%
TGC Endcap Muon Trigger	320 k	99.4%
LVL1 Calo trigger	7160	99.8%

- High operational fractions of all detector systems!
- ATLAS is ready for 2010 data taking at higher energies!
- Pixels and Silicon strips (SCT) at nominal voltage only with stable beams
- Muon RPC and TGC operation fraction increased to 99.5% and 100% in 2010 (respectively)

Detector/Combined Performance Plots

Andreas Wildauer

La Thuile 2010

TRT and electron identification

The intensity of the transition (=photon) radiation in the TRT is proportional to the Lorentz Factor $\gamma = E/m_0c^2$ of the traversing particle. Use number of high threshold hits to separate electrons and pions!

Andreas Wildauer

- Use well known particle decays to understand and validate detector performance
- Can be used to measure the track \bullet momentum resolution/scale and tracking efficiency

Andreas Wildauer

Calorimeter Response to Isolated Tracks

- Sample of isolated hadrons
 - 0.5<p_{T}<10 GeV, $|\eta|<0.8$
 - No other track within $\Delta R=0.4$
- Plot: $E(\Delta R < 0.1)/p$
- a powerful tool to test simulation of calorimeter response to single hadrons
- Remarkable quality of simulation:
 - very promising for detailed understanding of jet energy calibration
- A pay-off from the many years of test-beam studies and detailed comparisons to G4 simulation (models, material, etc)

La Thuile 2010

16

Muon Spectrometer

Muon Spectrometer

• Muon candidates reconstructed using ID and Muon Spectrometer

- $p_T > 2.5$ GeV and $|\eta| < 2.5$, only for runs with muon toroid magnet on
- Muon candidates are very forward and low momentum at 900 GeV
- Nice agreement between MC and data within the limited statistics (50 muon candidates, MC normalized to data)

• The measurement of charged particles in inclusive proton-proton reactions constrains phenomenological models of soft QCD and therefore is an important ingredient for future studies of high transverse momentum phenomena at the LHC.

$$\sigma_{Tot} = \sigma_{el} + \sigma_{SD} + \sigma_{DD} + \sigma_{ND}$$

Single Diffractive Double Diffractive Non Diffractive

- Use minimum bias trigger to study inelastic collisions
- Look at distributions of primary charged particles

$$\frac{1}{N_{ev}} \cdot \frac{dN_{ch}}{d\eta}, \quad \frac{1}{N_{ev}} \cdot \frac{1}{p_T} \cdot \frac{dN_{ch}}{dp_T}, \quad \frac{1}{N_{ev}} \cdot \frac{dN_{ev}}{dN_{ch}}, \quad \langle p_T \rangle vs. N_{ch}$$

• in the phase space $p_t > 500$ MeV and $|\eta| < 2.5$

Minimum Bias Trigger

- Min. Bias Trigger Scintillators
 - Require at least 1 hit on either side
 - "single arm" trigger
- Measure trigger efficiency from data
 - with orthogonal trigger which requires
 - colliding proton bunches in ATLAS
 - require > 6 hits in Pixel/SCT and a "loose" track with $p_T > 200 \text{ MeV}$
- Trigger Efficiency wrt. the analysis selection is extremely high
 - d_0 cut wrt. beam spot (not PV), no z_0 cut
- No biases from track η , p_T observed
- Very low systematic uncertainty <0.03%

- Use all data taken at 900 GeV with stable beams and where trigger, tracking detectors, and solenoid were operational
- Measure fully inclusive inelastic distributions to avoid any model dependence
 - Makes it easy for theorists to compare ATLAS results with their model
- Study events with
 - a reconstructed primary vertex and ≥ 1 reconstructed track with
 - $p_T > 500$ MeV, $|\eta| < 2.5$
 - ≥ 1 hit in pixel, ≥ 6 hits in SCT
 - $|\mathbf{d}_0^{PV}| < 1.5 \text{ mm}, |\mathbf{z}_0^{PV}|\sin(\theta) < 1.5 \text{ mm}$
- Correct for trigger, vertex & track (in)efficiency to hadron level
 - But do not extrapolate outside our phase space
- This leaves ~326k events for analysis
 - Beam background estimated from unpaired bunches is $< 10^{-4}$

La Thuile 2010

Primary Vertex Reco & Secondaries

- The reconstructed primary vertex must
 - contain \geq 3 tracks with
 - $p_T > 150$ MeV, $|d_0^{BS}| < 4$ mm
 - Vertex reconstruction efficiency is derived entirely from data
 - $\sim 100\%$ for events with 4 or more tracks
 - Systematic uncertainty < 0.1%
- Cut on d₀ and z₀ removes secondaries
 - Estimate remaining secondaries from the impact parameter distribution
 - $2.20\% \pm 0.05$ (stat) ± 0.11 (syst) of selected tracks

- The absolute tracking efficiency is derived from Monte Carlo
 - Careful checks needed that the data is well described by MC!
 - Any discrepancies between data and MC have to be accounted for (in terms of systematic uncertainties)
- Compare track hit multiplicities between data and Monte Carlo:
 - Average number of hits on tracks agree very well!

- Tracking inefficiency comes mostly from material interactions
 - largest contribution to systematic uncertainty!
- Material in ID is quite well understood (for this early stage)
 - Discrepancies are observed when e.g. looking at the efficiency to extend a pixel only track into the SCT
 - With more statistics conversions will be used to map the material

• Final tracking efficiencies vs. η and p_T are:

- An overall systematic uncertainty of 3.9% for $\eta=0$ was assigned
 - Green bands include both statistical and systematic uncertainties
 - Largest contribution comes from description of the material in the ID

- (left) ATLAS data shows higher values than all MC tunes
 But: MCs are tuned in different region of phase space
- (right) data/MC agrees well only for $p_t < 0.7 \text{ GeV}$

Results II

- (left) MC excess of events at $N_{ch} = 1$ but always lower for $N_{ch} \ge 10$
- (right) increase of $< p_T >$ with higher N_{ch}
 - Change in slope around $N_{ch} = 10$ as seen by CDF

Compared to CMS:

 N_{ch} consistently lower than measured by ATLAS. This is because of the correction CMS applies for the selection efficiency of the double diffractive component.

Compared to UA1:

UA1 data has been normalized by their associated cross-section measurement $N_{ch} \approx 20\%$ higher than ATLAS UA1 used a "double arm" trigger which rejects

events with low charged particle multiplicities

ATLAS Preliminary <N_{ch}>

η < 2.5	1.333 ± 0.003(stat.) ± 0.040(syst.)
NSD η < 2.4	1.241 ± 0.040

 \rightarrow NSD obtained using the Pythia DW tune (Tevatron)

CMS NSD ($p_t > 0.5 \text{ GeV}$) 1.202 ± 0.043

- Data taking in 2009 was very successful
 - Understanding of the detector based on cosmic data taking in 2008/2009 has been improved further
 - The detector performance is very satisfactory at this early stage
 - Computing infrastructure to process data worked very well
- Many, many interesting studies have been produced within the ATLAS collaboration on a very short time scale
- The first physics analysis has been approved by the collaboration
 The paper will follow very soon!

ATLAS is ready for data taking at higher energies!

- Thanks to the LHC team for the excellent performance in 2009
 - Expectations are high for 2010 ;-)
 - And proton beams have been circulated again (28.2.2010)!