

Results and Perspectives in Particle Physics La Thuile, Aosta Valley, 28.02. - 06.03. 2010

Daniel Greiner

Kepler Center for Astro and Particle Physics Physikalisches Institut, Universität Tübingen

On behalf of the Double Chooz collaboration

Content

- Neutrino physics:
 - $\boldsymbol{\varTheta}_{_{13}}$ neutrino oscillations and reactor $\boldsymbol{\nu}$
- Status quo:
 The CHOOZ experiment
- Improving CHOOZ: "Next generation" concepts
- Focus on Double Chooz: Design, status, time schedule and sensitivity
- The $\Theta_{_{13}}$ game is on: Reno and Daya Bay
- Summary

O 13

Flavor vs mass eigenstates of (Dirac) neutrinos \rightarrow Mixing matrix $c_{ii} = \cos \Theta_{ii}$ and $s_{ii} = \sin \Theta_{ii}$

Towards Θ_{13} with Double Chooz

• Flavor vs mass eigenstates of (Dirac) neutrinos \rightarrow Mixing matrix $c_{ii} = \cos \Theta_{ii}$ and $s_{ii} = \sin \Theta_{ii}$

 $\begin{pmatrix} v_e \\ v_\mu \\ v_\tau \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \\ v_3 \end{pmatrix}$ Atmosph. + Accel. Solar + KamLAND reactor <u> 3onzalez-Garcia et al,</u> 1534v1 [hep-ph] $\Theta_{23} = 42.3^{+5.3}_{-2.8}$ $\Theta_{13} = 6.8^{+2.6}_{-3.6}$ $\Theta_{12} = 34.4 \pm 1.0$ $\Delta m_{12}^2 = 7.59 \pm 0.20 \cdot 10^{-5} \text{eV}^2$ $\Delta m_{31}^2 = -2.40 \pm 0.11 \cdot 10^{-3} \,\mathrm{eV}^2$ (inverted) 1σ bounds $\Delta m_{31}^2 = 2.51 \pm 0.12 \cdot 10^{-3} \,\mathrm{eV}^2$ (normal)

V e

- Reactor v: pure \overline{v}_{e} from β decay, $E_{v} < 10$ MeV
- neutrino oscillation flavor detection probability P(t) $P(v_{\alpha} \rightarrow v_{\beta}) = |\langle v_{\beta} | v_{\alpha} \rangle|^{2} = \sum_{k,j} U_{\alpha k}^{*} U_{\beta k} U_{\alpha j} U_{\beta j}^{*} \exp\left(-\frac{i}{\hbar} (E_{k} - E_{j})t\right)$
- With ultrarelativistic approximation and c=ħ=1

 10^{2}

0.2

0

 10^{1}

 10^{3}

 $L/E [eV^{-2}]$

10⁴

10⁵

The CHOOZ experiment

• Liquid scintillator detector Target mass 5t, Gd-doped

- ~ 1000 m from Chooz B1 and B2 reactor cores (4 GW_{th} each)
- Looking for $\overline{v}_{e} \rightarrow \overline{v}_{x}$ disappearance
- 300 mwe overburden
- Total run time ~ 15 months half of that background only
- Detection by neutrino cc interaction (inverse beta decay, delayed coincidence)

Tuesday, March 02, 2010

 Result compatible with no oscillation hypothesis
 @ 90 % CL

parameter	relative error $(\%)$
reaction cross section	1.9%
number of protons	0.8%
detection efficiency	1.5%
reactor power	0.7%
energy absorbed per fission	0.6%
combined	2.7%

Apollonio et al, PLB 466 (1999) 415

Improving CHOOZ

Statistics limitations

- larger target mass
- longer run time (CHOOZ limited by scintillator degradation)
- Systematics limitations
 - Dominating uncertainty from neutrino flux
 - → Do relative measurement with (at least) two detectors at different distances from the source(s)

Eliminates v production cross section, reactor power and energy per fission errors (if detectors are identical)

- Reduce number of cuts (CHOOZ used 7, resulting in 1.5 % relative error)
- Background reduction strict material selection, remove PMTs from scintillating fluid, better shielding and deeper site
 Anderson et al, arXiv:0402041v1[hep-ex]

Double Chooz: Design

The EDF Chooz power plant is located in the French département des Ardennes, near Givet, close to the Belgian border.

400 m

Near site:

- 115 mwe overburden
- Neutrino rate ~ 500/day
- Muon rate ~ 250 Hz (IV)

Far site:

1000 m

- 300 mwe (old CHOOZ lab)
 - Neutrino rate ~ 50/day
 - Muon rate ~ 20 Hz (IV)

Detector volumes and instrumentation:

- Outer veto: four layers of plastic scintillator panels covering the top of the detector and the glove box
- Shield: 17 cm steel
- Inner veto: 50 cm of LAB based scintillator, 78 8" PMTs LED calibration system
- **Buffer**: 105 cm of mineral oil, 390 10" PMTs, calibration source guide tube, LED system
- γ-catcher: acrylics vessel,
 55 cm of PXE based scintillator
 calibration source guide tube
- Target: acrylics vessel,
 ~8t of Gd-doped PXE based scintillator, fish line and articulated arm calibration

Substantial R&D effort

• Scintillator development

X DCdisplay

- Detector Monte Carlo
- Reactor spectrum

000

 Image: State of the state

Towards Θ_{13} with Double Chooz

......

-- ¢

Showing event #0 Total number of p.e.:214

PMTs touched:154

Inner Veto: NO

Double Chooz: Backgrounds

Physics 2010

Accidental background

- "2 independent processes happen to look like ν event"
 - Natural radioactivity of components or rock
- Secondaries of μ interaction
- High purity materials, shielding & μ veto
- Expected rates: ~ 12 / day (near detector)
 ~ 2 / day (far detector)
- Correlated background
 "single process mimicking ν signature"
 - Spallation product β -n cascades
 - Fast n created by μ outside of detector
 - Deeper site, μ monitoring, modelling
 - Expected rates: ~ 8 / day (near detector) n
 ~ 2 / day (far detector) (up to GeV)

Double Chooz: Status & Time schedule

- Electronics installation ongoing
- Awaiting fluid delivery
- Commissioning run ~ May
- In parallel: closing of steel shield and outer veto installation
- Near laboratory construction starting
 - Fully funded
 - Design approved by EDF
 - To be finished till end 2010

Side view of near lab planning sketch

Acrylics integration, 10/2009

Top veto PMT installation, 1/2010

Double Chooz: Sensitivity

 Two distinct phases: 	Systematic errors	Absolute	Relative			
 Far detector only 	Production σ	1.9 %	-			
	Reactor power	0.7 %				
 Near plus far detector 	Energy per fission	0.6 %	-			
	Detector efficiency	1.5 %	0.5 %			
0.12	Number of protons	0.8 %	0.2 %			
0.12	Total	2.7 %	0.6 %			
0.09 0.09 0.08 0.08 0.08 0.08 0.07 0.06 0.06	ears - (Sensitivity limit 90 % CL 5 years far only data:				
0.05 Far only 0.04 0.03 0 1 2 3 Exposure time in years	ear plus far detector 3 4 $5in years3$ 4 53 4 53 4 53 4 53 4 53 4 53 4 53 4 53 4 53 4 53 4 53 4 53 4 53 4 53 6 10 10 10 10 10 10 10 10					

Results and Perspectives in Particle Physics 2010

Daya Bay & Reno

Results and Perspectives in Particle Physics 2010

Daya Bay power plant complex, China

RENO at YongGwang, South Korea

Reno expects to start mid-2010

DB near detectors to start mid-2010, far mid-2011		Power	L	L _{Far}	M_{target}	S _{stat}	S _{syst}	sin ² 2 <i>0</i> ₁₃ >
		[GW _{th}]	[m]	[m]	[t]	[%]	[%]	(90 % CL)
	DC	8.6	400	1050	8.3	0.5	0.6	0.03
	RENO	17.3	290	1380	16	0.3	0.5	0.02
	Daya Bay	17.4	360 (500)	1990 (1620)	80	0.2	0.4	0.01

- Daya Bay: 2 near sites, two 20t detectors each and one far site with four. Exchange detectors between sites for cross calibration.
- **RENO** consists of one near and one far detector, similar to DC
- Both have comparable detector design, but use water Cerenkov veto instead of LS
- Both sites need to correct for differing v flux contributions @ near and far site(s). No reactor-off data for both sites available and total shutdown of complex unlikely Towards Θ_{13} with Double Chooz

Summary

- Double Chooz aims at measuring O₁₃, the last undetermined neutrino mixing angle.
- Fixing $\Theta_{_{13}}$ allows to solve degeneracies of beam experiments \rightarrow access to $\delta_{_{CP}}$, mass hierarchy.
- DC far detector will start data taking ~ June and reach sensitivity of sin² 2 O₁₃ < 0.06 (90 % CL) after 1.5 years, improving the current limit by a factor of two.
- Very active field several experiments start data taking in the near future.
- Expect to learn more about neutrino nature soon!

Hiroshima Inst. Tech., Kobe Univ., Miyagi Univ., Niigata Univ., Tohoku Univ., Tohoku Gakuin Univ., Tokyo Metro. Univ., Tokyo Inst. Tech.

Fin

RWTH Aachen, Univ. Hamburg, MPIK Heidelberg, TU München, Univ. Tübingen **Univ of Sussex**

APC Univ. of Paris, SUBATECH (Nantes), DAPNIA CEA/Saclay, IPHC Strasbourg

Univ. of Alabama, ANL, Univ. of Chicago, Columbia, U.C. Davis, Drexel Univ., Kansas State, Illinois Inst. Tech., LLNL, Notre Dame, SNL, Univ. of Tennessee

Towards Θ_{13} with Double Chooz

Oscillation probabilities

$$P_{reactor} \simeq -\sin^2 2\theta_{13} \, \sin^2 \Delta + \alpha^2 \, \Delta^2 \, \cos^4 \theta_{13} \, \sin^2 2\theta_{12},$$

 $P_{long-baseline} \simeq \sin^2 2\theta_{13} \sin^2 \theta_{23} \sin^2 \Delta$ $\mp \alpha \sin 2\theta_{13} \sin \delta_{CP} \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \sin^3 \Delta$ $+ \alpha \sin 2\theta_{13} \cos \delta_{CP} \cos \theta_{13} \sin 2\theta_{12} \sin 2\theta_{23} \cos \Delta \sin^2 \Delta$ $+ \alpha^2 \cos^2 \theta_{23} \sin^2 2\theta_{12} \sin^2 \Delta$

with $\alpha \equiv \Delta m_{21}^2 / \Delta m_{23}^2$ and $\Delta \equiv \Delta m_{31}^2 L / (4E_{\nu})$.

Mahn et al hep-ex/0409028v4

Reactor experiments

- Disappearance: $v_e \rightarrow v_x$
- Clean $\Theta_{_{13}}$ measurement
- No information on $\delta_{_{\rm CP}}$

Beam experiments

- Appearance $\nu_{\mu} \rightarrow \nu_{e}$
- $\Theta_{_{13}}$ coupled to $\delta_{_{
 m CP}}$ and $\Theta_{_{23}}$
- $\delta_{_{\mathrm{CP}}}$ if $\Theta_{_{13}}$ not too small

 \rightarrow Need information from both to determine ν parameters

Shape vs rate information

