

UNDERSTANDING <u>COSMIC RAYS</u> AND SEARCHING FOR <u>DARK MATTER</u> WITH PAMELA

Roberta Sparvoli for the PAMELA Collaboration University of Rome Tor Vergata and INFN

COSMIC RAYS PRODUCTION MECHANISMS

DARK MATTER SEARCHES

There's evidence for dark matter on many scales ...

Searches for WIMP Dark Matter

P. Gondolo, IDM 2008

EXPECTED DM SIGNALS

Deviations of the antiparticle spectra wrt secondary production

PAMELA SCIENTIFIC GOALS

- Search for dark matter annihilation
- Search for antihelium (primordial antimatter)
- Study of cosmic-ray propagation (light nuclei and isotopes)
- Study of electron spectrum (local sources?)
- Study solar physics and solar modulation
- Study terrestrial magnetosphere

Unprecedented statistics and new energy range for cosmic ray physics

- e.g. contemporary antiproton & positron energy, $E_{max}\approx\,50~GeV$

- Simultaneous measurements of many species
 - constrain secondary production models

I HEAT-PBAR flight ~ 25 days PAMELA data I CAPRICE98 flight ~ 5 days PAMELA data

PAMELA DETECTORS

Main requirements \rightarrow high-sensitivity antiparticle identification and precise momentum measure

GF: 21.5 cm² sr Mass: 470 kg Size: 130x70x70 cm³ Power Budget: 360W

THE RESURS DK-1 SPACECRAFT

• **Resurs-DKI:** multi-spectral imaging of earth's surface

• PAMELA mounted inside a pressurized container

Lifetime >3 years (assisted)

• Data transmitted to NTsOMZ, Moscow via high-speed radio downlink. ~15 GB per day

- Quasi-polar and elliptical orbit (70.0°, 350 km - 600 km)
- Traverses the South Atlantic Anomaly
- Crosses the outer (electron) Van Allen belt at south pole

PAMELA STATUS

- Today 1350 days in flight
- data taking ~73% live-time
- >19 TBytes of raw data downlinked
- >2. 10⁹ triggers recorded and under analysis

ANTIPROTON/POSITRON DISCRIMINATION

Antiproton (NB: e⁻/p̈ ~ I 0²)

Positron (NB: p/e⁺ ~10³⁻⁴)

ANTIPARTICLE SELECTION

ANTIPROTONS

HIGH-ENERGY ANTIPROTON ANALYSIS

• Antiproton/proton identification:

- rigidity (R) \rightarrow SPE
- $|Z| = 1 (dE/dx vs R) \rightarrow SPE\&ToF$
- β vs R consistent with $M_p \rightarrow ToF$
- p-bar/p separation (charge sign) \rightarrow SPE
- p-bar/e⁻ (and p/e⁺) separation \rightarrow CALO

• Dominant background \rightarrow spillover protons:

finite deflection resolution of the SPE ⇒ wrong assignment of charge-sign @ high energy
proton spectrum harder than antiproton ⇒ p/p-bar increase for increasing energy (10³ @1GV 10⁴ @100GV)

\rightarrow Required strong SPE selection

PROTON-SPILLOVER BACKGROUND

- Spectrometer tracking information is crucial for highenergy antiproton selection
- Finite spectrometer resolution high rigidity protons may be assigned wrong sign-of-charge

Also background from scattered protons

 Eliminate 'spillover' using strict track cuts (χ², lever arm, no δ-rays, etc)
 MDR > 10 × reconstructed rigidity

• Spillover limit for antiprotons expected to be ~200 GeV.

Electrons: efficiently removed by CALO Pions (from interactions in dome) : about 3% in the pbar sample

PAMELA: ANTIPROTON-TO-PROTON RATIO

PRL 102, 051101 (2009)

PAMELA: ANTIPROTON-TO-PROTON RATIO

PRL 102, 051101 (2009)

ANTIPROTON-TO-PROTON RATIO: NEW DATA

Increased statistics (until Dec. 2008)

ANTIPROTON FLUX Increased statistics Errors underestimated, Donato et al. (delta unc.) possible residual Donato et al. (nuclear unc.) spillover-proton contamination DRD_model DR_model PD model Bogomolov IMAX1992 BESS-polar04 • PAMELA Buffington 0 BESS1995-97 10⁻⁵ **BESS1999** Δ MASS1991 ¢. **BESS1998** ቍ **BESS2000** CAPRICE1998 21 CAPRICE1994 27 10⁻⁶ PAMELA 2009 10² 10⁻¹ 10 1 kinetic energy [GeV]

POSITRONS

HIGH-ENERGY POSITRON ANALYSIS

- Electron/positron identification:
 - rigidity (R) \rightarrow SPE
 - $|Z| = 1 (dE/dx = MIP) \rightarrow SPE\&ToF$
 - $\beta=1 \rightarrow \text{ToF}$
 - e^-/e^+ separation (charge sign) \rightarrow SPE
 - e^+/p (and e^-/p -bar) separation \rightarrow CALO
- Dominant background → interacting protons:
 - fluctuations in hadronic shower development $\Rightarrow \pi_0 \rightarrow \gamma \gamma$ might mimic pure em showers

• proton spectrum harder than positron $\Rightarrow p/e^+$ increase for increasing energy (10³ @1GV 10⁴ @100GV)

 \rightarrow Required strong CALO selection

POSITRON IDENTIFICATION WITH CALO

- Identification based on:
 - **Shower topology** (lateral and longitudinal profile, shower starting point)
 - **Total detected energy** (energy-rigidity match)
- Analysis key points:
 - Tuning/check of selection criteria with:
 - test-beam data
 - simulation
 - flight data \rightarrow dE/dx from SPE & neutron yield from ND
 - Selection of pure proton sample from flight data ("pre-sampler" method):
 - Background-suppression method
 - Background-estimation method

80 GV proton

51 GV positron

Final results make <u>NO USE</u> of test-beam and/or simulation calibrations. The measurement is based only on flight data with the <u>background-estimation</u> method

PAMELA: POSITRON FRACTION WRT OTHEREXP'SNATURE 458, 697, 2009

ESTIMATED PROTON CONTAMINATION WITH "PRE-SAMPLER" METHOD

"A statistical procedure for the identification of positrons in the PAMELA experiment", O. Adriani et al., astro-ph, arXiv: 1001.3522v1, in publication on APP !

EXAMPLE: DARK MATTER

Majorana DM with **new** internal bremsstrahlung correction. NB: requires annihilation cross-section to be 'boosted' by >1000.

Hooper and Zurek arXiv:0902.0593v1

Kaluza-Klein dark matter

PRIMARY POSITRON SOURCES

Astrophysical processes

- Local **pulsars** are well-known sites of e⁺e⁻ pair production (the spinning B of the pulsars strips e- that emit gammas then converting to pairs trapped in the cloud, accelerated and then escaping at the Poles):
 - → they can individually and/or coherently contribute to the e⁺e⁻ galactic flux and explain the PAMELA e⁺ excess (both spectral feature and intensity)
 - \rightarrow No fine tuning required
 - → if one or few nearby pulsars dominate, anisotropy could be detected in the angular distribution
 - $\rightarrow\,$ possibility to discriminate between pulsar and DM origin of e^+ excess

EXAMPLE: PULSARS

Cholis, Goodenough, Hooper, Simet, and Weiner **arXiv:0809.1683**

arXiv:0810.1527

Revision of standard CR model

• Pairs created also in the acceleration sites (e.g. in old SNRs);

• Distribution of CR sources not homogeneus (SNRs more in spiral arms)

POSITRONS FROM OLD SNR'S

P. BLASI, PRL 103, 051104 (2009)

EXPLANATION WITH SUPERNOVAE REMNANTS

SHAVIV, NAKAR & PIRAN, ASTRO-PH.HE 0902.0376

HOW TO CLARIFY THE MATTER? New SNRs Localized Pulsars Dark matter (Serpico, mechanisms SNR (Donato, Ullio, **Bucciantini**) Gaggero, Cuoco) (Blasi, Mertsch) (Piran) Uncertainties Acceleration model Environmental Source properties Particle physics model (polar cap, outer parameters at SNR Local environment (production gap, ...) Particle physics Diffusion model Courtesy of Injection spectrum mechanism) enhancement • E-α? Distance to closest (Sommerfeld) Release into the ISM. source Substructure (when, how much?) Cut-off energies enhancement (halo Source locations, model) • ٢ ages, ... • Edsjo Tests Positron fraction Anisotropy of flux Antiproton fluxes FSR & IC photons down at several Fluctuations in Secondary nuclei Continuing positron hundred GeV fraction rise spectrum (arXiv: B/C, antiprotons 0903.1310) CMBR distortions Anisotropy consistency checks LHC signatures (gamma, X-ray, ...)

+ need updated background model (with e.g. proper handling of local sources)

ELECTRONS

Any positron source is an electron source too ...

RECENT CLAIMS OF (e⁺+e⁻) EXCESS

FERMI does not confirm the ATIC bump but finds an excess wrt conventional diffusive models

PAMELA ELECTRON FLUX MEASUREMENTS

Key points wrt other experiments (ATIC, HESS, FERMI) :

★ Combination of CALO and SPECTROMETER allow energy selfcalibration in flight → no dependence on ground calibrations or MC simulations

♦ Very deep CALO (16 X_0) → containment of the shower maximum beyond 1 TeV

- Neutron detector help proton rejection, especially at high energy
- ✤ No atmospheric contamination
- Possibility to disentangle electrons from positrons

But ..

 \clubsuit Smaller acceptance \rightarrow lower statistics

PAMELA ELECTRON ($e^+ + e^-$) SPECTRUM

PAMELA ALL ELECTRONS→ HIGH ENERGY VERY PRELIMINARY

PAMELA PROTON FLUX

PAMELA PROTON FLUX

PAMELA HELIUM FLUX

PAMELA HELIUM FLUX

RED:BESS-Tev, BLUE:AMS, BLACK: PAMELA

PAMELA SECONDARY/PRIMARY NUCLEI RATIOS

• Important input to secondary production + propagation models

- Secondary to primary ratios:
 - B / C
 - Be / C
 - Li / C
- Helium and hydrogen isotopes:
 - ³He / ⁴He
 - d / He

Currently collected (data analyzed until Dec. 2008):

120.000 C nuclei 70.000 B nuclei

Truncated mean of multiple dE/dx measurements in different silicon planes

PAMELA SECONDARY/PRIMARY: B/C

PAMELA SECONDARY/PRIMARY: BE/C

PAMELA SECONDARY/PRIMARY: LI/C

C/O RATIO

HELIOSPHERE AND MAGNETOSPHERE

SOLAR MODULATION

LOW ENERGY e⁺: CHARGE DEPENDENT SOLAR MODULATION EFFECTS

CHARGE-DEPENDENT SOLAR MODULATION IN THE POSITRON FRACTION

PAMELA ELECTRON-TO-POSITRON RATIO AND THEORETICAL MODELS

PHYSICS OF THE MAGNETOSPHERE

Figure 4. Measurements of the positron to electron flux ratio in the equatorial region (L shell < 1.2; B shell > 0.23 G).

Figure 6. The differential energy spectrum of quasitrapped electrons. The PAMELA result is compared to other measurements and theoretical models. Model 1, *Koldashov et al.* [1995]; model 2, *Derome et al.* [2001].

Measurements of quasi-trapped electron and positron fluxes with PAMELA Journal of Geophysical Research, 114, A12, pag. A12218, 2009

PHYSICS OF THE MAGNETOSPHERE

Pamela World Map: 350 – 650 km alt

SUBCUTOFF ANTIPROTONS IN SAA

pbar, B<0.23, 1.1<L<1.5

SUMMARY

• **PAMELA** has been in orbit and studying cosmic rays for ~ 44 months. >10⁹ triggers registered, and >19 TB of data has been down-linked.

• Antiproton-to-proton flux ratio (~100 MeV - ~100 GeV) shows no significant deviations from secondary production expectations. Additional high energy data in preparation (up to ~150 GeV).

• Low energy positron fraction (~1.5 - ~5 GeV) shows solar modulation effects. Excellent statistics!

High energy positron fraction (>10 GeV) increases significantly (and unexpectedly!) with energy. Primary source?
Data at higher energies will help to resolve origin of rise (spillover limit ~300 GeV).

http://pamela.roma2.infn.it

SUMMARY

Interesting features in cosmic ray data seen by PAMELA in last months' analysis:

- Electron flux: spectrum up to ~200 GeV shows spectral features that may point to additional components. Analysis is ongoing to increase the statistics and expand the measurement of the e⁻ spectrum up to ~500 GeV and e⁺ spectrum up to ~300 GeV (all electrum (e-+ e+) spectrum up to ~1 TV).
- **Proton and Helium fluxes**: hardening of the spectrum at high energies:
 - Effects of propagation and reacceleration?
 - Harder spectral sources?
 - Possible hadron sources (seen by other experiments as anisotropies?)

Other measurements under study:

- New antiHe limits
- Strange matter (particles with high A/Z)
- Solar flares