

Fermi Gamma-ray Space Telescope

Studies of Cosmic Ray Electrons with the Fermi-LAT

L. Latronico

INFN-Pisa On behalf of the Fermi Mission Team

Les Rencontres de Physique de la Vallèe d'Aoste La Thuile, March 1 2010

- □ Satellite gamma-ray telescope
 - Large Area Telescope (LAT)
 - 20 MeV > 300 GeV
 - Gamma Burst Monitor (GBM)
 - 8 KeV 40 MeV
- □ Key features
 - Huge field of view
 - 30 mins full sky every 3hrs
 - Huge energy range
- □ Milestones
 - 11 jun 2008 : launch
 - 04 aug 2008 : science ops start
 - 13 aug 2009 : γ data go public
 - 18 feb 2010 : 100B triggers

Fermi-LAT scientific highlights

- □ Gamma-ray sky catalog
 - >1400 sources > 100 MeV
 - Known classes plus UNID
- Pulsar catalog
 - >60 γ-ray PSR, ~20 γ-ray only
- □ Active Galactic Nuclei
 - TeV cosmic accelerators
- Gamma-ray Bursts
 - Cosmological probes
 - Fundamental physics (LIV)
- Diffuse emission (Knoedelseder talk)
 - Galactic model
 - EGB
- Cosmic Rays Electrons (this talk)

65 refereed papers 66 Atels / 21 GCN circulars

□ Probe CR models

- Sources (including DM), interactions, propagation, diffusion
- □ Probe CR targets (ISM, ISRF)
 - Propagation and diffusion
 - Strong connection with diffuse gamma-ray radiation
- □ Probe nearby sources
 - limited electron lifetime within Galaxy
- □ Answers to long-standing questions and vast literature

THE ASTROPHYSICAL JOURNAL, 162:L181-L186, December 1970 © 1970. The University of Chicago. All rights reserved. Printed in U.S.A.

PULSARS AND VERY HIGH-ENERGY COSMIC-RAY ELECTRONS

C. S. Shen*

Department of Physics, Purdue University, Lafayette, Indiana 47907 Received 1970 June 8; revised 1970 September 19

G

Measurement of the Cosmic Ray $e^+ + e^-$ Spectrum from 20 GeV to 1 TeV

Fermi and the others

caveat1 – illustrative - 2x corrections possible caveat2 - statistics is not enough

Les Rencontres de Physique de la Vallèe d'Aoste 2010

Fermi and the others

different techniques have different systematics

How the LAT detects electrons

Trigger and downlink Incoming Electron Very versatile and configurable **Triggering on ~ all particles that** ACD identifies cross the LAT charged • Including electrons (8M/yr) particles On board filtering to fit bandwidth **Remove many charged** ____ particles Main track - Keeps all events with more than pointing to the 20 GeV in the CAL (HE) hit ACD tile - Prescaled (1:250) sample of unfiltered triggers (LE) **Electron identification** The challenge is large proton Same tracking background and energy **Rejection power of 10^3 - 10^4** _ reconstruction required algorithms used - Can not separate electrons for γ -rays from positrons $- \rightarrow$ Dedicated high energy • • • • • • electron event selection

- > ACD: large energy deposit per tile
- TKR: small number of extra clusters around main track, large number of clusters away from the track
- > CAL: large shower size, low probability of good energy reconstruction

- > ACD: few hits in conjunction with track
- TKR: single clean track, extra clusters around main track clusters (preshower)
- CAL: clean EM shower not fully contained in CAL

Shower size data-MC comparison vs energy

Space Telescope

Good agreement over whole spectrum Trade-off residual background with systematics

Energy dependent selection on combined electron probability from CAL and TKR probabilities

 $P^{e}_{comb} = sqrt(p^{e}_{tkr} \times p^{e}_{cal})$

Good agreement over whole spectrum no CT cut need at low energies

Energy resolution checks – High X0 events

□ Critical for high energies

- Shower leakage from CAL
- Select subsample of events with long path-length (HI-X0)

- X0>13

- 12 in CAL + minimum track length in TKR + events contained in a single CAL module
- ↑ Energy resolution X ~ 2 4
 - Down to 5% at 1 TeV (68% containment half-width)
- Instrument acceptance to ~ 5% of standard and limited to a specific portion of instrument phase space
 - Much higher systematics

Comparison of standard and High-X0 spectra

Consistent within their own systematics

Space Telescope

already demonstrated by simulation of LAT response to spectral features with artificially worsened resolution

→ the LAT energy resolution is adequate to detect prominent spectral features

→ the Fermi spectrum is NOT dependent on the energy resolution of the bulk of the events

Extension to low energy measurements

~ 7 GeV is the natural lower limit

Gamma-ray Space Telescope

Extension to low energy measurements

- Determine geomagnetic cutoff energy as a function of geomagnetic orbital coordinates
 - Higher McIlwainL, lower cutoff energy
- Measure spectrum for primary component above cutoff
- Recombine spectra into global spectrum

Les Rencontres de Physique de la Vallèe d'Aoste 2010

Other possible interpretations? Many !

4) SNR inhomogeneity

Space Telescope

But with specific signatures

- 1. Spectral features
- 2. Excess in diffuse gamma ray emission
- 3. Rising nuclei ratio (i.e. B/C)
- 4. Falling positron ratio above 100 GeV

Models Discriminants from Fermi

□ Diffuse gamma-ray emission

- Spectrum
 - IC excess from lepton excess
- Shape
 - More spherical distribution for DM wrt PSR
- □ Measure CRE anisotropies
 - Tracer of local sources of electrons
 - Currently no evidence for anisotropy

IC diffuse gammas from DM halo – GALPROP sim

□ Fermi measures CR electrons from 7 GeV to 1 TeV

- Robust event selection
- Adequate energy resolution
- Spectral index is hard (Γ ~ -3) and requires revision of simplistic diffusive scenarios
 - Focus on source
 - Primary distribution
 - Extra component viable: PSR, DM
 - Acceleration of secondaries
- Additional observables are crucial
 - Fermi
 - diffuse gamma-ray, anisotropies
 - Spectrometers (PAMELA, AMS)
 - Positron, proton, nuclei ratios

BACKUP

Overview of the Large Area Telescope

ACCURATE NO ACCURATE OF

LAT:

- modular 4x4 array
- 3ton 650watts

Anti-Coincidence (ACD):

- Segmented (89 tiles + 8 ribbons)
- Self-veto @ high energy limited
- 0.9997 detection efficiency

Tracker/Converter (TKR):

- Si-strip detectors
- ~80 m² of silicon (total)
- W conversion foils
- 1.5 X0 on-axis
- 18XY planes
- ∽10⁶ digital elx chans
- Highly granular
- High precision tracking
- Average plane PHA

Calorimeter (CAL):

- 1536 CsI(TI) crystals
- 8.6 X0 on-axis
- large elx dynamic range (2MeV-60GeV per xtal)
- Hodoscopic (8x12)
- Shower profile recon
- leakage correction
- EM vs HAD separation

□ Very accurate Monte Carlo

- >45k active volumes
- Geant4 optimized physics
- □ Simulation is key for
 - Reconstruction tuning
 - Event selection and performance
 - Estimate residual contamination

□ Full subsystems reconstruction

- ACD PH analysis
- TKR powerful tracking
- CAL 3D shower profile recon, handles cracks and saturation

- Event selection tuned on simulation and validated with real data
 - 100s variables describing key event topology in each subsystems
 - Prefilters +
 - Classification Trees (CT) optimizing electron efficiency and hadron rejection
- Peak geometry factor 2.8 m²sr at 50 GeV, rejection power up to 1:10⁴ at 1 TeV
- □ Systematic uncertainties kept below 20%
 - Data-MC disagreement and event selection effect on acceptance <20%</p>
 - Proton spectrum <20%</p>

– Energy calibration uncertain (+5%,-10%)→ rigid shift of the spectrum

LAT Electron performance

□ Performance is a trade-off among:

- electron-acceptance hadron contamination systematics
- □ Geometry factor

Gamma-ray Space Telescope

- $\sim 3 \text{ m}^2 \text{sr}$ (50 GeV) to $\sim 1 \text{ m}^2 \text{sr}$ (1 TeV)
- > 10x wrt previous experiments
- **\Box** Rejection power: ~ 1:10³ (20 GeV) to ~ 1:10⁴ (1 TeV)
- Maximum residual contamination ~ 20% (1 TeV)
- ❑ Maximum systematic uncertainty ~ 20% (1 TeV)

Energy resolution validations with BT electrons

Dermi

Gamma-ray Space Telescope

G

Shower size at different selection steps

Gamma-ray Space Telescope

LE selection variables validation

Systematic uncertainties

Extension to low energy measurements

Space Telescope

Absence of high energy features

Sensitivity to spectral features demonstrated

Spectrum with best possible energy resolution compatible with main spectrum

Event rate before background subtraction does not show any feature

Electrons

Hadrons

more simple type events

Examples of less obvious events well tagged

•	"Measurement of the Cosmic Ray e⁺+e⁻ Spectrum from 20 GeV to 1 TeV with the Fermi Large Area Telescope" (05/2009)	~190
	 Cited across a broad range - cosmic-ray, astronomy, particle physics (D0, BABAR) 	
•	"Fermi/Large Area Telescope Bright Gamma-Ray Source List" (07/2009)	~85
•	"Fermi Observations of High-Energy Gamma-Ray Emission from GRB 080916C" (03/2009)	~74
•	"Bright Active Galactic Nuclei Source List from the First Three Months of the Fermi Large Area Telescope All-Sky Survey" (07/2009)	~62
•	"The Fermi Gamma-Ray Space Telescope Discovers the Pulsar in the Young Galactic Supernova Remnant CTA 1" (11/2008)	~41

NASA's Fermi Explores High-energy Space Invaders

Since its launch last June, NASA's Fermi Gamma-ray Space Telescope has discovered a new class of pulsars, probed gamma-ray bursts and watched flaring jets in galaxies billions of light-years away. Today at the American Physical Society meeting in Denver, Colo., Fermi scientists revealed new details about high-energy particles implicated in a nearby cosmic mystery.

Physics: Cosmic light matter probes heavy dark matter

May 4, 2009

New results from the Fermi Gamma-Ray Space Telescope, the most precise to date in the energy range 20 GeV to 1 TeV, should help resolve whether cosmic rays composed of the lightest charged particles, i.e., electrons and positrons, come from dark matter or some other astrophysical source.

[Viewpoint on Phys. Rev. Lett. 102, 181101 (2009)]

High-energy Electrons Could Come from Pulsars—or Dark Matter

by Michael Wall Something in our galactic neighborhood seems to be producing large numbers of high-energy electrons, according

An artist's conception of the Fermi Gamma-ray Space Telescope. (Image: NASA.)

CERN COURIER

Jun 8, 2009

Fermi measures the spectrum of cosmic-ray electrons and positrons

The Fermi Gamma-Ray Telescope can find out about more than gamma rays. It has now provided the most accurate measurement of the spectrum of cosmic-ray electrons and positrons. These

results are consistent with a single power-law, but visually they suggest an excess emission from about 100 GeV to 1 TeV. The additional source of electrons and positrons could come from nearby pulsars or dark-matter annihilation.

Lights Out for Dark Matter Claim?

+ Enlarge Image

Last November, data from a balloon-borne particle detector circling the South Pole revealed a dramatic excess of high-energy particles from space--a possible sign of dark matter, the mysterious substance whose gravity seems to hold our galaxy together. But satellite data reported today stick a pin in that

