Rare Decays/B_s CPV: Updates from the Tevatron

Derek Axel Strom University of Illinois at Chicago for the CDF and DØ Collaborations

XXIV Rencontres de Physique de la Vallée d'Aoste La Thuile, Aoste Valley, Italy February 28 – March 6, 2010

Rare Decays and B_s CPV at the Tevatron

 Large production cross-sections and high energy collisions at the Tevatron offers the opportunity to study all species of b-hadrons. We have access to rare decays and precision CPV measurements either complementary (B_s) or competitive (B⁰ and B⁺) to the B factories.

<u>Topics</u>

- \circ Rare B_d and B_s decays
 - $-B \rightarrow K^{(*)}\mu\mu$ and $B_s \rightarrow \varphi\mu\mu$ (A_{FB} in $B \rightarrow K^{(*)}\mu\mu$)
 - $B_{(d,s)} \rightarrow \mu \mu$
 - $-B_{s} \rightarrow \phi \phi$ branching fraction
- \circ CPV in B_s
 - $-B_s \rightarrow J/\psi(\mu\mu)\phi(KK)$ angular analysis

FCNC

- Highly suppressed in SM (forbidden at tree level)
- BSM physics models (SUSY, Technicolor, 4th generation) see enhanced decay amplitudes through loop diagrams
 - Promising for exploring BSM physics

- Could enhance branching fractions (10-1000 × SM)
- Could affect angular distributions
- Would be observable at the Tevatron
- Dimuon signature experimentally/theoretically clean

La Thuile 2010

Tevatron Performance

Tevatron Experiments

DØ Detector

- Excellent tracking and muon coverage Extended muon system |η| < 2.0 Tracking up to |η| < 3.0
 Additional layer of Si on beampipe since 2006
- Excellent vertex, momentum and mass resolution
- \odot Particle ID: p, K and π by dE/dx and TOF
- Trigger on displaced tracks

B_(u,d,s)→hμμ Decays

- Dimuon trigger ($p_T(\mu)$ >1.5 or 2.0 GeV/c)
 - Muon coverage $|\eta| < 1.0$
- Neural network optimizes event selection

4.4 fb⁻¹

[CDF Public Note 10047]

Unbinned maximum log-likelihood fit to invariant mass

B_(u,d,s)→hμμ Decays

- \odot Dimuon trigger (p_T(μ)>1.5 or 2.0 GeV/c)
 - Muon coverage $|\eta| < 1.0$
- Neural network optimizes event selection

- 4.4 fb⁻¹
- [CDF Public Note 10047]
- Unbinned maximum log-likelihood fit to invariant mass

$\mathcal{B}(B_{(u,d,s)} \rightarrow h\mu\mu)$

- B→J/ψh used as normalization channel for $\mathcal{B}(B\rightarrow h\mu\mu)$ to avoid many systematic uncertainties $\mathcal{B}(B^+\rightarrow K^+\mu\mu) = [0.38 \pm 0.05 \text{ (stat)} \pm 0.03 \text{ (syst)}] \times 10^{-6}$ $\mathcal{B}(B^0\rightarrow K^{*0}\mu\mu) = [1.06 \pm 0.14 \text{ (stat)} \pm 0.09 \text{ (syst)}] \times 10^{-6}$
- Precision competitive to world average values:

 $\mathcal{B}(\mathsf{B}^+ \rightarrow \mathsf{K}^+ \mu \mu) = [0.52 + 0.08 - 0.07] \times 10^{-6}$ $\mathcal{B}(\mathsf{B}^0 \rightarrow \mathsf{K}^{*0} \mu \mu) = [1.05 + 0.15 - 0.13] \times 10^{-6}$

• First measurement:

 $\mathcal{B}(B_s \rightarrow \varphi \mu \mu) = [1.44 \pm 0.33 \text{ (stat)} \pm 0.46 \text{ (syst)}] \times 10^{-6}$

- The rarest observed B_s decay! [CDF Public Note 10047]
- In agreement with theoretical prediction of 1.61×10⁻⁶
 [Geng, Liu, J.Phys.G29:1103-1118, 2003]

Differential $\mathcal{B}(B \rightarrow K^{(*)}\mu\mu)$

- Dimuon mass spectrum could show hints of new physics NP could appear in differential $\mathcal B$ versus $q^2 = M_{\mu\mu}^2$
 - SM maximum allowed SM minimum allowed

	$B^0 \to K^{*0} \mu^+ \mu^-$	$B^+ \to K^+ \mu^+ \mu^-$
Bin#1	0.00 - 2.00	0.00-2.00
Bin#2	2.00 - 4.30	2.00 - 4.30
Bin#3	4.30-8.68	4.30-8.68
Bin#4	10.09 - 12.86	10.09 - 12.86
Bin#5	14.18 - 16.00	14.18 - 16.00
Bin#6	16.00-19.30	16.00-23.00

Consistent with SM

Forward-Backward Asymmetry

 $A_{FB}(q^2) = \frac{\Gamma(q^2, \cos(\theta_{\mu}) > 0) - \Gamma(q^2, \cos(\theta_{\mu}) < 0)}{\Gamma(q^2, \cos(\theta_{\mu}) > 0) + \Gamma(q^2, \cos(\theta_{\mu}) < 0)}$

Data divided into 6 bins of q²

- A_{FB} may display different behavior under some BSM scenarios
- Good probe for exploring BSM

where $q^2 = M_{\mu\mu}^2$

University of Illinois at Chicago

La Thuile 2010

A_{FB} in $B \rightarrow K^{(*)}\mu\mu$

F_L : K* Long. Polarization

A_{FB} : μ FB Asymmetry

A_{FB} in $B \rightarrow K^{(*)}\mu\mu$

F_L : K* Long. Polarization

A_{FB} : μ FB Asymmetry

-- SM prediction

-- BSM scenario

Consistent with B-factory measurements: Babar 384M BB, PRD 79, 031102(R) (2009) Belle 657M BB, PRL 103, 171801 (2009)

La Thuile 2010

Rare B Decays and CPV in Bs at the Tevatron

A_{FB} in $B \rightarrow K^{(*)}\mu\mu$

F_L : K* Long. Polarization

A_{FB} : μ FB Asymmetry

-- SM prediction -- BSM scenario

There is a lot of room for improvement!

Expect more precise measurements by:

- 2× more data
- additional trigger path
- additional decay channels

$B_{(d,s)} \rightarrow \mu \mu$ Rare Decays

- Highly suppressed in SM
- SM expected limits:

 $\mathcal{B}(B_{d} \rightarrow \mu \mu) < (1.00 \pm 0.14) \times 10^{-10} \sim |V_{td}|^{2}$ $\mathcal{B}(B_{s} \rightarrow \mu \mu) < (3.86 \pm 0.57) \times 10^{-9} \sim |V_{ts}|^{2}$

> G. Buchalla, A.J. Buras Nucl. Phys. B400, 225 (1993) A.J. Buras PRL B 566, 115 (2003)

- Order of magnitude below detector sensitivities
- New physics could greatly enhance \mathcal{B} up to 100 × SM
- Observation of this decay would be an unambiguous sign of new physics!

 $B_{(d,s)} \rightarrow \mu \mu$

- Muons form B-candidate
 vertex
- 6 input variables
 - B-candidate decay length and significance
 - B-candidate track isolation
 - Opening angle between
 - B-candidate momentum
 - and decay length
 - $p_T(B)$ and $p_T(\mu_{LOW})$

Inputs to Boosted Decision Tree

Rare B Decays and CPV in Bs at the Tevatron

 $B_{(d,s)}$ μμ

Run Ila

Run Ilb-I

Run IIb-II

 $B_s \rightarrow \mu\mu$

Enhancement over SM greater than ~10×
 already excluded
 Combined Tevatron

expected limits may reach 4× with 8 fb⁻¹

Improvements ongoingStay tuned!

95% CL Limits on $\mathcal{B}(B_s \rightarrow \mu\mu)$

$\mathcal{B}(B_s \rightarrow \varphi \varphi)$

○ $B_s \rightarrow \varphi \varphi$ and $B_s \rightarrow J/\psi \varphi$ (normalization) reconstructed

 $\mathcal{B}(B_{s} \rightarrow \varphi \varphi)/\mathcal{B}(B_{s} \rightarrow J/\psi \varphi) = [1.78 \pm 0.14 \text{ (stat)} \pm 0.20 \text{ (syst)}] \times 10^{-2}$ $\mathcal{B}(B_{s} \rightarrow \varphi \varphi) \text{ extracted using world average value of } \mathcal{B}(B_{s} \rightarrow J/\psi \varphi)$ $\mathcal{B}(B_{s} \rightarrow \varphi \varphi) = [2.40 \pm 0.21 \text{ (stat)} \pm 0.27 \text{ (syst)} \pm 0.82 \text{ (BR)}] \times 10^{-5}$ $\circ \text{ Measurement of amplitude analysis in progress}$

La Thuile 2010

CPV in B_s System

O CPV in B_s system occurs through interference of decays with and without mixing, analogous to B_d system $\begin{array}{c}
 B'' \longrightarrow J/\Psi K_s' & B_s' \longrightarrow J/\Psi \phi \\
 \sqrt{} & \swarrow & \swarrow & \begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d \\ s \\ b \end{pmatrix}$

- \circ B_s mass eigenstates B_s^L, B_s^H
 - Mass difference $\Delta m_s = m_H m_L \sim 2 |M_{12}|$
 - Width difference $\Delta \Gamma_s = \Gamma_L \Gamma_H \sim 2 |\Gamma_{12}| \cos \phi_s$
- CP violating phases
- $$\begin{split} \varphi_{s} &= \arg(-M_{12}/\Gamma_{12}) & \varphi_{s}^{SM} \sim 0.004 \\ \beta_{s} & \beta_{s}^{SM} &= \arg(-V_{ts}V_{tb}*/V_{cs}V_{cb}*) \sim 0.02 \\ 0 & \varphi_{s}^{NP} \text{ contributes to both } \varphi_{s} \text{ and } \beta_{s} & A. \text{ Lenz and } U. \text{ Nierste, JHEP 06, 072(2007)} \\ -2\beta_{s} &= -2\beta_{s}^{SM} + \varphi_{s}^{NP} & -2\beta_{s} \sim \varphi_{s} \text{ if NP dominates} \end{split}$$

Derek Axel Strom

 $V_{us}V_{ub}^*$

CPV in $B_s \rightarrow J/\psi \phi$

◦ CPV mixing phase in $B_s \rightarrow J/\psi \phi$ very small in SM:

 $\phi_s^{J/\psi\phi,SM} = -2\beta_s^{J/\psi\phi,SM} = -0.04$

- Large measured value sure sign of new physics
- Angular analysis
 - Separate into CP-even and CP-odd components

$B_s \rightarrow J/\psi \phi$ Combination

Combined 2D profile likelihood
 ΔΓ_s vs. $β_s^{J/ψφ}$

CDF Run II Prel. 2.8 fb⁻¹ + DØ 2.8 fb⁻¹ 0.6 68% CL _____0.4 Region allowed by 95% CL 99% CL new physics models $\sum \Gamma_s$ 0.2 SM given by: 0.0 $\Delta \Gamma_{c} = 2 |\Gamma_{12}| \cos \phi_{c}$ -0.2 \circ 2.1 σ deviation -0.4 from SM -0.6 -1.0 -0.5 0.5 0.0 1.0 1.5 $\beta_{c}^{J/\psi\phi}$ [rad] [D0 Note 5928, CDF Public Note 9787]

- Tevatron experiments are very active in B physics
- о B_s→фµµ (4.4 fb⁻¹)
 - First observation!
- B→K^(*)µµ (4.4 fb⁻¹)
 - First measurement of A_{FB} at a hadron collider!
- $B_{d,s}$ → $\mu\mu$ (3.7 and 4.8 fb⁻¹)
 - New world's best upper limit!
- $\circ B_s \rightarrow J/\psi \varphi$
 - Tevatron combination 2.1σ deviation from SM
- \circ 7.9 fb⁻¹ delivered to each experiment
- \circ ~12 fb⁻¹ of data expected to be delivered by the end of 2011
- Can expect many improved results and maybe new discoveries in the next two years!

Backup

La Thuile 2010

Rare B Decays and CPV in Bs at the Tevatron

Derek Axel Strom

University of Illinois at Chicago

$B_s \rightarrow J/\psi \varphi$

- Golden channel to measure B_s CPV
- \circ Can measure lifetime, ΔΓ_s, and β_s
- $\odot~B_s$ (S=0) decay to J/ ψ (S=1) and φ (S=1) leads to three different angular momentum final states
- \circ L=0 (s-wave), 2 (d-wave) → CP-even (B_s^L)

K-

o L=1 (p-wave)

Disentangle CP states by angular distributions of the decay products

 ϕ rest frame

 J/Ψ rest frame

Rare B Decays and CPV in Bs at the Tevatron

A_{FB} in $B \rightarrow K^{(*)} \mu \mu$ (5 bin)

\circ 1st and 2nd bin are merged

