QCD and Hadronic Interactions with Initial-State-Radiation at B-Factories

Denis Bernard

Laboratoire Leprince-Ringuet, Ecole polytechnique IN2P3/CNRS, Palaiseau, France

On behalf of the BABAR Collaboration

Les 23èmes Rencontres de Physique de la Vallée d'Aoste La Thuile, Italie, 2010

The "Anomalous" Magnetic Moment of the Lepton $\vec{\mu} = g \frac{e}{2m} \vec{s}$, a = (g-2)/2

(1928) Pointlike Dirac particles : g = 2, a = 0.

 $g \neq 2$ due to higher order contributions :

- (1947) Nafe et al. measure a_e =
- (1948) Schwinger (1st order)

 $a_e = (2.6 \pm 0.5) \times 10^{-3}$ $a^{(1)} = \alpha/2\pi \approx 1.2 \times 10^{-3}$

Lepton universality at this 1st order

Our belief in QED and in the gauge-theory-based SM originates from this 1st success.

Higher Orders

One graph given as example out of many ...

$$a = a^{\text{QED}} + a^{\text{had}} + a^{\text{weak}}$$

$a_e, \ lpha \ and \ a_\mu$

• Heavy-to-Light and Light-to-Heavy mass ratios take part differently (e/ μ) in the loops (QED, QCD, weak)

$$a_{e} = \frac{\alpha}{2\pi} - 0.3 \left(\frac{\alpha}{\pi}\right)^{2} + 1.2 \left(\frac{\alpha}{\pi}\right)^{3} - 1.9 \left(\frac{\alpha}{\pi}\right)^{4} + 0.0(4.6) \left(\frac{\alpha}{\pi}\right)^{5} + 1.72(2)10^{-12} (\text{QCD} + \text{weak})$$
$$a_{\mu} = \frac{\alpha}{2\pi} + 0.8 \left(\frac{\alpha}{\pi}\right)^{2} + 24. \left(\frac{\alpha}{\pi}\right)^{3} - 131. \left(\frac{\alpha}{\pi}\right)^{4} + 663. \left(\frac{\alpha}{\pi}\right)^{5} + 7.07(7)10^{-8} (\text{QCD} + \text{weak})$$

Numbers truncated !

• a_e measured in a one-electron quantum cyclotron

 $a_e = 1159652180.73(\pm 0.28)10^{-12}$, (0.24 ppb)

- $\Rightarrow \alpha$ known to 0.37 ppb
- In total the QED uncertainty on $a_{\mu}^{
 m QED}$ is tiny : 1.7 ppb

Odom PRL 97 (2006) 030801,

Gabrielse PRL 97 (2006) 030802

a_{μ} Measurement E821 @ BNL

- $\pi^- \rightarrow \mu^- \nu$ violates P, μ^- longitudinally polarized.
- μ^- stored in a cyclotron, constant \vec{B} .
 - μ^- rotating with freq ω_c ; μ^- spin precessing with freq ω_s
 - freq. difference $\omega_a = \omega_s \omega_c = a_\mu e B/m_\mu$
- $\mu \rightarrow e\nu\overline{\nu}$ violates P, e direction (energy in lab) remembers μ^- polarization.
- Fraction of e above $E_{\rm threshold}$ is modulated with freq. ω_a

$$a_{\mu}(\text{expt}) = (11659208.0 \pm 5.4(\text{stat}) \pm 3.3(\text{syst})) \times 10^{-10}$$
, (0.54 ppm)
E821 @ BNL, $\mu^{+} - \mu^{-}$ charge average Bennett Phys.Rev.D73 :072003,2006

Theoretical prediction for a_{μ} – May 2009

SM-to-experiment comparison [in units 10^{-10}]

116 584 71.81	\pm 0.02
690.30	\pm 5.26
-10.03	\pm 0.11
11.60	\pm 3.90
15.32	\pm 0.18
11659179.00	\pm 6.46
11659208.00	\pm 6.30
29.00	± 9.03
_	116 584 71.81 690.30 -10.03 11.60 15.32 11659179.00 11659208.00 29.00

Assuming Gaussian statistics, a 3.2 σ discrepancy.

Jegerlehner, Nyffeler / Phys Rept 477 (2009) 1110

uses e^+e^- input only for VP

Theoretical prediction : The Hadronic VP (1)

$$\gamma_{\text{had}} \gamma_{\text{had}} \Leftrightarrow \left| \gamma_{\text{had}} \right|^2$$

- Quark loops not computable from first principles QCD.
- Vacuum polarization : energy dependent running charge :

$$e^2 \to e^2/[1 + (\Pi'(k^2) - \Pi'(0))]$$

• Dispersion relation from analyticity

$$\Pi'(k^2) - \Pi'(0) = \frac{k^2}{\pi} \int_0^\infty \frac{Im\Pi'(s)}{s(s-k^2 - i\epsilon)} \mathrm{d}s$$

• Optical theorem (unitarity)

$$Im\Pi'(s) = \alpha(s)R_{had}(s)/3, \quad \text{with } R_{had}(s) = \sigma_{had}\frac{3s}{4\pi\alpha(s)} = \frac{\sigma_{e^+e^- \to hadrons}}{\sigma_{e^+e^- \to \mu^+\mu^-}}$$

Wrapping it up, the "dispersion integral" :

$$a_{\mu}^{\text{had}} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int \frac{R_{\text{had}}(s)\hat{K}(s)}{s^2} \mathrm{d}s$$

• Technically,
$$\int_{4m_{\pi}^2}^{E_{cut}^2}$$
 is obtained from the data, $\int_{E_{cut}^2}^{\infty}$ from pQCD.

- The estimation of the contribution with the largest uncertainty to a_{μ} (theory) boils down to a precise measurement of $R_{had}(s)$
- Most precision on $R_{\rm had}(s)$ needed at low \sqrt{s}

$R_{\rm had}(s)$: Direct Measurements $e^+e^- \rightarrow Hadrons$

PDG, Phys. Lett. B667,1 (2008)

 $e^+e^- \rightarrow Hadrons$: channel break-down

 $e^+e^- \rightarrow \pi^+\pi^-$ dominates (73 %)

 $a_{\mu}^{\pi^{+}\pi^{-}}[2m_{\pi}, 1.8 \,\text{GeV}/c^2] = (504.6 \pm 3.1(\exp) \pm 0.9(rad)) \times 10^{-10}$ $a_{\mu}^{\text{had}} = (690.9 \pm 5.3) \times 10^{-10}$

Davier, Nucl. Phys. Proc. Suppl. 169, 288 (2007)

- (KLOE 08 supersedes KLOE04)
- The 3.2 σ discrepancy mentioned above is based on this input

Jegerlehner, Nyffeler / Phys Rept 477 (2009) 1110

τ Decay Spectral Functions

• example
$$\pi^0\pi^- \leftrightarrow \pi^+\pi^-$$

•
$$\sigma(e^+e^- \to \pi^+\pi^-) = \frac{4\pi\alpha^2}{s}\nu_0(s)$$
, $\nu(s)$ "spectral function"

•
$$\frac{1}{\Gamma} \frac{\mathrm{d}\Gamma}{\mathrm{d}s} = F(s) \frac{\mathcal{B}(\tau \to e\nu_{\tau}\overline{\nu}_{e})}{\mathcal{B}(\tau \to \pi^{-}\pi^{0}\nu_{\tau})} \times \nu_{-}(s), \text{ where } F(s) \text{ is a known function of } s$$

- CVC : $\nu_0(s) = \nu_-(s)$ isospin breaking (IB) corrections \cdots
- ALEPH (1997), OPAL (1999), CLEO (2000)
- $\mathcal{B}(\tau \to \pi^- \pi^0 \nu_\tau)$ ALEPH's most precise $(25.471 \pm 0.097 \pm 0.085)\%$

Belle's High Statistics Results on $\tau \to \pi^- \pi^0 \nu_{\tau}$

72 fb⁻¹ of e^+e^- data taken at \approx 10.6 GeV

Fujikawa Phys.Rev.D78 :072006,2008.

Combination from Davier Eur. Phys. J. C 27, 497 (2003).

Several contributions to the IB corrections, among which :

- Short- and long-distance radiative corrections
- $\pi^0 \pi^{\pm}$ and $\rho^0 \rho^+$ mass differences
- FSR correction included

IB corrections are still being worked on :

$$\begin{array}{rl} -13.8 & \pm 2.4 + 4.2 ({\rm FSR}) & {\rm Eur. \ Phys. \ J. \ C \ 27, \ 497 \ (2003).} \\ -16.07 & \pm 1.85, & 0906.5443 {\rm v3 \ [hep-ph] \ Accepted \ by \ Eur. \ Phys. \ J. \ C} \\ \Delta = & -6.9 & {\rm Units \ 10^{-10}} \end{array}$$

Initial State Radiation (ISR)

- Optimal use of the available luminosity
- Covers whole energy range with same detector condition and analysis.
 - And good efficiency down to threshold
- If observe the whole final state (γ + hadrons) \Rightarrow over-constrained kinematical fit \Rightarrow powerful background noise rejection.

$$\frac{\mathrm{d}\sigma_{[e^+e^- \to f\gamma]}}{\mathrm{d}s'}(s') = \frac{2m}{s} W(s, x) \sigma_{[e^+e^- \to f]}(s') , \qquad x = \frac{E_{\gamma}}{\sqrt{s}} = 1 - \frac{s'}{s}$$

• W(s, x) "radiator function", density of probability to radiate a photon with energy $E_{\gamma} = x\sqrt{s}$: a known function Binner, Physics Letters B 459 (1999) 279

ISR : "Old" BaBar Results

Vigourous campaign that is still in progress

$$\begin{array}{l} K^{+}K^{-}\eta, \ K^{+}K^{-}\pi^{0}, \ K^{0}K^{\pm}\pi^{\mp} \\ 2(\pi^{+}\pi^{-})\pi^{0}, \ 2(\pi^{+}\pi^{-})\eta, \ K^{+}K^{-}\pi^{+}\pi^{-}\pi^{0}, \ K^{+}K^{-}\pi^{+}\pi^{-}\eta \\ K^{+}K^{-}\pi^{+}\pi^{-}, \ K^{+}K^{-}\pi^{0}\pi^{0}, \ K^{+}K^{-}K^{+}K^{-} \\ 3(\pi^{+}\pi^{-}), \ 2(\pi^{+}\pi^{-}\pi^{0}), \ K^{+}K^{-}2(\pi^{+}\pi^{-}) \\ \overline{p}p \\ 2(\pi^{+}\pi^{-}), \ K^{+}K^{-}\pi^{+}\pi^{-}, \ K^{+}K^{-}K^{+}K^{-} \\ \pi^{+}\pi^{-}\pi^{0} \end{array}$$

• First observations

Phys.Rev.D76 :092005,2007.
Phys.Rev.D76 :012008,2007.
Phys.Rev.D73 :052003,2006.
Phys.Rev.D73 :012005,2006.
Phys.Rev.D71 :052001,2005.
Phys.Rev.D70 :072004,2004.

Phys.Rev.D77 :092002,2008.

232 fb⁻¹, **89** fb⁻¹ @ 10.6 GeV

- ISR γ tagging \Rightarrow efficient background rejection
- Only charmless mesons in this slide
- Unprecedented accuracy :

$$a_{\mu}(<1.8\,\text{GeV}/c^2) \begin{array}{c} \pi^+ \,\pi^- \,\pi^0 & 2.45 \\ 2(\pi^+ \,\pi^-) & 14.20 \\ 3(\pi^+ \,\pi^-) & 0.10 \\ 2(\pi^+ \,\pi^- \,\pi^0) & 1.42 \end{array}$$

without BABARwith BABAR 2.45 ± 0.26 3.25 ± 0.09 14.20 ± 0.90 13.09 ± 0.44 0.10 ± 0.10 0.11 ± 0.02 1.42 ± 0.30 0.89 ± 0.09

Davier, Nucl. Phys. Proc. Suppl. 169, 288 (2007)

ISR : "Old" BaBar results

ISR : KLOE $\pi^+\pi^-$

- 240 pb⁻¹
- On the ϕ
- No ISR photon tagging
- $\vec{p}_{\rm had}$ compatible with a γ in beam pipe
- LO : No additional photon reco'ed
- W(s, x) from NLO рнокнава generator (precision 0.5 %)
- Luminosity (0.3 %) from Bhabha scat. (BABAYAGA generator (0.1 %))

 $a_{\mu}^{\pi^{+}\pi^{-}}$ [592 - 975 MeV] = (387.2 ± 0.5(stat) ± 2.4(expt) ± 2.3(th)) × 10^{-10}

• Compatible with CMD-2 & SND on (630 - 958 $\,{\rm MeV})$ with similar precision : $\Delta=(-4.6\pm4.2)\times10^{-10}$

Ambrosino, Phys.Lett.B670 :285,2009

$ISR : BaBar \pi^+\pi^-$

Only attempt in BaBar, to my knowledge, to master systematics at the 10^{-3} level

- ISR γ in EMC (thus : at large angle)
- 1 (for efficiency) or 2 (for physics) tracks of good quality
- Particle identification (PID) of the charged particles
- separate $\pi\pi, KK, \mu\mu$ event samples
- kinematic fit (using only direction of ISR γ) including 1 additional γ : NLO !
- obtain all efficiencies (trigger, filter, tracking, Pld, fit) from same data
- measure ratio of $\pi\pi$ to $\mu\mu$ cross sections to cancel : ee luminosity, additional ISR, vacuum polarization, ISR γ efficiency

Correct for FSR in $\mu\mu$ and ISR + additional FSR, both calc. in QED, and checked in data

$$R_{\exp}(s') = \frac{\sigma_{[\pi\pi\gamma(\gamma)]}(s')}{\sigma_{[\mu\mu\gamma(\gamma)]}(s')} = \frac{\sigma_{[\pi\pi(\gamma)]}^{0}(s')}{(1+\delta_{FSR}^{\mu\mu})\sigma_{[\mu\mu(\gamma)]}^{0}(s')} = \frac{R(s')}{(1+\delta_{FSR}^{\mu\mu})(1+\delta_{add,FSR}^{\mu\mu})}$$

A Comment : γ -Tag or not γ -Tag ?

A key issue is the difficulty (impossibility?) to control the ISR γ efficiency to the desired precision.

Two ways out :

- KLOE : no γ tag, at the cost of a significant background. (mitigated by requesting that the non-observed γ would be in the beam pipe)
- BaBar : γ tag, and use the $\pi \pi / \mu \mu$ ratio \Rightarrow the ISR γ efficiency cancels in the ratio (to first order) $\Rightarrow \gamma$ tag costs a loss of 9/10 in statistics

Note that KLOE has a tagged analysis in progress.

$ISR : BaBar \pi^+\pi^-$

- Similar precision as combination of previous e^+e^- results.
- 2.0 σ larger than previous e^+e^- average PRL 103, 231801 (2009)
- Longer paper, in preparation, to be submitted to PRD

Systematics

Relative systematic uncertainties (in 10^{-3}) on the $e^+e^- \rightarrow \pi^+\pi^-(\gamma)$ cross section by $\sqrt{s'}$ intervals (in GeV) up to 1.2 GeV.

Source of	CM Energy Interval (GeV)				
Uncertainty	0.3-0.4	0.4-0.5	0.5-0.6	0.6-0.9	0.9-1.2
trigger/ filter	5.3	2.7	1.9	1.0	0.5
tracking	3.8	2.1	2.1	1.1	1.7
$\pi ext{-ID}$	10.1	2.5	6.2	2.4	4.2
background	3.5	4.3	5.2	1.0	3.0
acceptance	1.6	1.6	1.0	1.0	1.6
kinematic fit (χ^2)	0.9	0.9	0.3	0.3	0.9
correlated $\mu\mu$ ID loss	3.0	2.0	3.0	1.3	2.0
$\pi\pi/\mu\mu$ non-cancel.	2.7	1.4	1.6	1.1	1.3
unfolding	1.0	2.7	2.7	1.0	1.3
ISR luminosity ($\mu\mu$)	3.4	3.4	3.4	3.4	3.4
total uncertainty	13.8	8.1	10.2	5.0	6.5

PRL 103, 231801 (2009)

$BaBar: Sanity check: Comparison of the \mu\mu spectrum with QED$

- Here the radiator function is needed.
- MC simulation corrected for all known MC/data differences.
 - e.g. : ISR γ efficiency measured in data, from $\mu\mu\text{-only}$ reco'ed evts.
 - MC corrected for known NLO deficiencies by comparing to PHOKHARA

Good agreement within $0.4 \pm 1.1\%$; dominated by $\mathcal{L}_{e^+e^-}$ ($\pm 0.9\%$)

VDM Fit of $|F_{\pi}(s)|^2$

- $|\text{form factor}|^2$ fitted with a vector dominance model, $\rho, \rho', \rho'', \omega$.
- ρ 's described by the Gounaris-Sakurai model $\chi^2/n_{df} = 334/323$

BaBar $\pi^+\pi^-$: comparison with previous results

The green band is the representation of the VDM fit to the BaBar ISR data

a_{μ} : Where do we stand?

- BaBar 2.4 σ from BNL.
- $(e^+e^- + \text{BaBar})$ 3.3 σ from BNL.

The (e^+e^--BNL) shift has decreased, so has the uncertainty $... > 3\sigma$ still

• $a_{\mu}(\mathrm{expt}): 0.54 ightarrow 0.14 \ \mathsf{ppm}$ Carey, FERM

- Carey, FERMILAB-PROPOSAL-0989 (2009)
- was statistics limited (0.46 ppm); move μ storage ring BNL \rightarrow FNAL.

What could happen during the present decade

- Vacuum polarization (hadronic) : $a_{\mu}^{\pi^{+}\pi^{-}}$ is the bottle-neck
 - e^+e^- , "direct"
 - upgrades, $CMD2 \rightarrow CMD3$ and SND
 - BES III : $R: 2.0 4.6 \,\mathrm{GeV}$, Zhemchugov @ TAU08
 - e^+e^- , ISR : Statistics is not an issue.
 - Belle checks BaBar's ISR result ?
 - KLOE checks it's ISR result with $\pi\pi/\mu\mu$ ratio
 - τ : Statistics is not an issue.
 - Theorists converge to a narrow range calculation of Δ IB
 - BES III : au spectral fns, $\mathcal{B}(au o \pi^- \pi^0
 u)$ Zhemchugov @ TAU08
 - BaBar checks Belle's au result?
- Light-by-Light : Theory $+ \gamma \gamma$ program at DA Φ NE-2
- QED : The 5^{th} order is being evaluated

27

Prades @ TAU08

Kinoshita

Je vous remercie de votre attention

Back-up slides

Jargon

- ISR Initial State Radiation
- FSR Final State Radiation
- VP Vacuum Polarization
- IB Isospin Breaking
- CVC Conserved vector current
- P Parity
- pQCD perturbative QCD
- VDM Vector dominance model

Form Factor and $R_{had}(s)$

$$R_{\text{had}}(s) = \frac{1}{4} \left(1 - \frac{4m_{\pi}^2}{s} \right)^{3/2} \left| F_{\pi}^{(0)}(s) \right|^2$$