Search for High Mass Higgs at the Tevatron

Maiko Takahashi University of Manchester / Fermilab on behalf of the CDF and DZero Collaborations

La Thuile 2010, 28 Feb – 6 March

SM Higgs Boson Search

Standard Model (SM) Higgs boson searches in the high mass region

- H → WW dominant decay mode for masses above ~135GeV
- Leading production mechanism is gluon-gluon fusion

Tevatron Experiments

- ▶ $p\overline{p}$ collisions @ $\sqrt{s} = 1.96$ TeV
- Two experiments with general purpose detectors, CDF and DØ
- Collected and analysed 4.8 5.4 fb⁻¹ of data for high mass Higgs search

Event Signature

Signature from $gg \rightarrow H \rightarrow WW$

- Two high p_T isolated leptons
 + large missing E_T
- Relatively clean environment

Additional sources of Higgs signals with dileptons

- Associated production (VH) and Vector Boson fusion (qqH)
 → ~35% more signal
- Other Higgs decay modes (e.g. $H \rightarrow \tau\tau$)
 - → helps lower mass region

Background Rejection

Selection based on event kinematics

- 2 high p_T leptons with η up to 2.5
- Missing E_T cut to reject a large fraction of dominant Z background

High jet multiplicity region

 \rightarrow veto events with b-tagged jets to reduce tt

S/B ~ 1.5% after all selection cuts with 60 signal events (CDF + DØ) at M_H = 160GeV

Analysis Strategies I

Split analysis into several orthogonal channels

 \rightarrow optimise separately for different type of kinematics

events/2.5 GeV 10⁴ 01 03 DØ, 5.4 fb⁻¹ Data e⁺e⁻ Lepton flavour: different efficiency, Preliminary Z+jets resolution and kinematics W+jets DØ separate analysis into 10² Multijet ee 10 $ee/\mu\mu/e\mu$ pairs, Top pair Diboson CDF into high/low S/B samples 10⁻¹ Signal (x 10) 0 20 40 60 80 100 120 140 160 180 200 M_{inv}[GeV] events/2 GeV 10⁵ events/2.5 GeV e±μ∓ ัน $D\emptyset$, 5.4 fb⁻¹ $D\emptyset$, 5.4 fb⁻¹ **Preliminary Preliminary** 10⁴ eµ μμ 10³ pair pair 10² 10 10 1 Ē preselection 10⁻¹ 100 120 140 160 180 200 160 180 200 100 120 140 20 60 80 0 20 40 60 80 M_{inv} (GeV) M_{inv}[GeV]

M. Takahashi

Analysis Strategies II

High Mass Higgs at Tevatron, La Thuile 2010

M. Takahashi

Analysis Strategies III

Charge configuration:
 opposite sign (OS) and same sign (SS)
 lepton pair

→ SS signal from VH production, physics background very small

- Kinematic regions: high/low dilepton invariant mass (M_{II}) region
 - \rightarrow dedicated low M_{II} analysis by CDF

Basic cuts on kinematic variables to reduce dominant backgrounds + multivariate analysis for maximum use of information

M. Takahashi

Discriminating Variables I

Variables using kinematics of two leptons

- Angular separation: powerful discriminant against WW as well as other bkgds →smaller separation angle for leptons from H decay due to spin correlation
- Invariant mass: effective against most of the physics backgrounds
- Kinematics of individual leptons and quality information

Discriminating Variables II

Variables describing event topology

- Relation between lepton and missing E_T e.g. transverse mass (M_T), angular separation, E_T sum
- Topological variables based on leptons, jets and missing E_T

Matrix Element (ME) calculation

- Translate parton level kinematics into reco as probability density
- Powerful discriminant
 → ~10% gain in sensitivity

Same Charge DiLeptons

Same sign leptons from VH production

- Suppress Standard Model bkgds
 → true same sign from WZ and ZZ
- ► Fake leptons from W+jet and multijet
- Charge mis-measurement in OS (mostly Z → II events)

Instrumental Backgrounds

- Not well modelled by simulation
- Lepton fake rate measured in data
- Charge mis-measurement controlled by track quality cuts

Multivariate Analysis

Maximise the power of discriminating variables using Neural Networks

Systematic Uncertainties

Uncertainty on estimated signal & bkgd normalisation and shape

Systematics correlated between CDF and DØ

- Integrated luminosity (4% correlated out of 6% total)
- ► Theoretical cross sections (5–10%)

Other sources

M. Takahashi

- MC acceptance, up to 10%
- Lepton ID, 2–4%
- Jet / missing E_T modelling,
 4–30% (process dependent)
- Instrumental bkgd estimate

Signal well above background uncertainty

Sensitivity

Log-Likelihood Ratio (LLR)

background only, LLR_b

background+signal, LLR_{s+b}

observed, LLR_{obs}

M. Takahashi

Uncertainty bands on LLR_b → include statistical & systematic uncertainties

Sensitivity of Higgs search in high mass region

- Separation between LLR_b and LLR_{s+b} translates to sensitivity of the analysis
- Maximum around ~165GeV \rightarrow expected sensitivity above 2σ
- Observation consistent with background only hypothesis

G

Combination of Tevatron Searches for the Standard Model Higgs Boson in the W^+W^- Decay Mode

Combined dilepton results published

→ First joint CDF+DØ publication on SM Higgs search

Exclusion region 162–166 GeV @95%CL (159–169 GeV expected)

(*CDF Collaboration) ([†]D0 Collaboration)

0031-9007/10/104(6)/061802(11)

Improving Cross Section Limits

Significant improvement over the past year

All channels (low+high mass) combined, expected limits down to ~2x Standard Model prediction in most of mass region

M. Takahashi

Conclusions

Currently excluding $M_H = 162 - 166 \text{ GeV}$

With ever improving analysis techniques and increasing data, CDF and DØ experiments will be reaching the sensitivity to the Standard Model Higgs boson across a wide mass range

M. Takahashi

Back Up

back up

Tevatron Projection

Luminosity projection curves for Run II

time since FY04

Expecting > 9 fb⁻¹ delivered by Tevatron by the end of 2010, > 12 fb⁻¹ by the end of 2011

Higgs Search Projection

M. Takahashi

Cross Section Limits

High mass dilepton channels only

expected (observed) limits @95% CL in units of SM σ

	M = 120 GeV	M = 165 GeV	M = 200 GeV
CDF	8.85 (12.04)	1.20 (1.29)	4.53 (6.74)
DØ	14.9 (20.8)	1.36 (1.55)	6.23 (5.53)

M. Takahashi

Matrix Element Discriminant

Probability density P for m = 5 modes: WW, ZZ, Wy, W+jet and H \rightarrow WW

(ϵ = probability of a parton level object to be reconstructed as a lepton)

$$P_m(x_{obs}) = rac{1}{<\sigma_m >} \int rac{d\sigma_m^{th}(y)}{dy} \epsilon(y) G(x_{obs}, y) dy$$

 $\begin{array}{ll} x_{obs} & \text{are the observed "leptons" and } \vec{k_T}, \\ y & \text{are the true lepton four-vectors (including neutrinos)}, \\ \sigma_m^{th} & \text{is the leading-order theoretical calculation of the cross-section for mode } m, \\ \epsilon(y) & \text{is the total event efficiency } \times \text{ acceptance}, \\ G(x_{obs}, y) & \text{is an analytic model of resolution effects, and} \\ \frac{1}{<\sigma_m>} & \text{is the normalization.} \end{array}$

Form a likelihood discriminant for S = WW or H \rightarrow WW

$$LR_S(x_{obs}) \equiv rac{P_S(x_{obs})}{P_S(x_{obs}) + \Sigma_i k_i P_i(x_{obs})},$$

 k_i is the expected fraction for each background and $\Sigma_i k_i = 1$

ref: CDF public note 9887

M. Takahashi