Searches for Low Mass Higgs Boson at the Tevatron

Song-Ming Wang Academia Sinica

On behalf of the CDF and DØ Collaborations

Les Rencontres de Physique de la Vallée d'Aoste La Thuile, Aosta Valley, Italy 2010

Outline

Introduction

•Why Higgs ?

•Higgs Production at Tevatron

Low Mass Higgs Search Strategy

•Results from Various Low Mass Searches

•Prospects

•Summary

Why Look for a Higgs Boson ?

- In Standard Model (SM), Electromagnetism and Weak interactions are unified under the SU(2)xU(1) gauge symmetry
- •However the symmetry in the theory has to be broken, otherwise :
 - •All particles will be massless
- In SM, the Electro-Weak symmetry is broken via the Higgs mechanism
 - •Every particle obtain mass by interacting with Higgs field through exchange of Higgs boson
 - •SM predicts existence of a Higgs boson but its mass is not predicted
- •Higgs boson is the only undiscovered particle in SM, making its discovery one of the most important present goal in Particle Physics

What We know of the SM Higgs Boson

- •Lower bound from direct searches at LEP: •m_H>114 GeV/c²
- Top and W mass measurements are constraining the Higgs sector

• Latest (LEPEWWG Aug '09) fits to precision Electroweak data

• $m_{\rm H} = 87^{+35}_{-26} \text{ GeV/c}^2$ • $m_{\rm H} < 157 \text{ GeV/c}^2$ (@ 95% CL)

 $\bullet m_{\rm H} < 186 \text{ GeV/c}^2$ (include LEP limit)

Tevatron : *Most Powerful p-pbar Collider !*

•CDF/D0 : ~6.6-7 fb⁻¹

The Tevatron Experiments

Multipurpose detectors :

- •Electron, muon, tau identification
- •Jet and missing energy measurement
- •Heavy-flavor tagging through displaced vertices and soft leptons

Higgs Boson Production at the Tevatron

<u>SM Higgs Decay</u>

Higgs Search Strategy

- At Tevatron, Higgs production is very rare process
- Difficult to search, but not impossible. CDF/DØ already probing processes with σ ~1 pb (WZ, ZZ, single top).
- Search Strategy:
 - Identify Higgs signal by its unique final state signature
 - Increase signal acceptance
 - Advanced discriminating algorithms
 - Search in as many channels as possible *(will present results from various channels)*

Analysis Techniques : Identify Higgs Signal• Look for distinctive signature in final stateHigh Pt Leptons:• WH $\rightarrow lv$ bb, ZH $\rightarrow ll$ bb ($l : e, \mu, \tau$)• Identify charged leptons can greatly suppress
multi-jet background• Evtend lepton cover using leptons patients

-1.5

-1

-0.5

0.5

1.5

-2

• Extend lepton coverage, using leptons not in detector fiducial region, in forward region

Analysis Techniques : Identify Higgs Signal

•Look for distinctive signature in final state

High Pt Leptons:

- WH $\rightarrow l\nu$ bb, ZH $\rightarrow ll$ bb ($l : e, \mu, \tau$)
- Identify charged leptons can greatly suppress multi-jet background
- Extend lepton coverage, using leptons not in detector fiducial region, in forward region

Analysis Techniques : Identify Higgs Signal

•Look for distinctive signature in final state

High Pt Leptons:

- WH $\rightarrow l\nu$ bb, ZH $\rightarrow ll$ bb ($l : e, \mu, \tau$)
- Identify charged leptons can greatly suppress multi-jet background
- Extend lepton coverage, using leptons not in detector fiducial region, in forward region

Heavy-Flavor Jets :

- Low mass Higgs decays primarily H→bb
- Tag the b-jets by exploiting long life time of B hadrons
- Develop advanced tagging algorithms, increase tagging efficiency and reduce fakes

Analysis Techniques : Identify Higgs Signal

•Look for distinctive signature in final state

High Pt Leptons:

- WH $\rightarrow l\nu$ bb, ZH $\rightarrow ll$ bb ($l : e, \mu, \tau$)
- Identify charged leptons can greatly suppress multi-jet background
- Extend lepton coverage, using leptons not in detector fiducial region, in forward region

Heavy-Flavor Jets :

- •Low mass Higgs decays primarily H→bb
- Tag the b-jets by exploiting long life time of B hadrons
- Develop advanced tagging algorithms, increase tagging efficiency and reduce fakes

Large Missing E_T (MET):

- •ZH \rightarrow *vv*bb, WH \rightarrow *lv*bb : MET from *v*
- Require large MET can also greatly reduce multi-jet background

Analysis Techniques : Multivariate Discriminant

- Expected Higgs signal too small for counting experiment search
- Single kinematic distribution does not provide sufficient discriminating power
- Exploit every possible information in an event
- Multivariate discriminant tools:
 - •Artificial Neural Network (NN)
 - •Boosted Decision Tree (BDT)
 - •Matrix Element (ME) probabilities
- Multivariate tools have been successfully applied to rare processes:
 - •Single top
 - •WW,WZ (in lvqq final state)

Results from Various Low Mass Searches

Number of Events

- •Low signal statistics, but clean channel
- Fully reconstructible final state, 2 resonances
- Event Selection :
 - •Select Z candidate decaying into *ee* or $\mu\mu$
 - • \geq 2 jets, with \geq 1 b-tag jet
- Jet energy resolution is crucial in constructing M(bb) mass for signal/background separation
- CDF, DØ use event information (e.g. MET, Z mass, vector transverse momentum of Zjj) to correct jets' energy

$ZH \rightarrow l^+l^-bb \ (l = e, \mu)$

• Search performed in several sub-channels :

- •Tight, loose lepton ID
- •Single, double b-tag jets

Multivariate algorithms to separate signal from backgrounds:

Events / Bin

- •CDF : 2D NN (separate ZH vs ttbar, ZH vs Z+jets)
- •DØ : Train BDT to separate ZH from SM backgrounds

Clean signature, relatively larger signal statistics

- •Event Selection:
 - 1 high Pt e or μ
 - large missing transverse energy
 - ≥ 2 jets, ≥ 1 b-tag jet
- Main backgrounds:
 - •W+heavy-flavor jets
 - •Mistags (light-flavor jets mis-ID as b-jets)
 - •QCD multi-jet (jet faking lepton)
 - •Top, Dibosons

WH \rightarrow lvbb (l = e, μ)

To improve search sensitivity :

- CDF : use ME method to calculate an Event Probability Discriminant
- DØ : train NN on several kinematic variables to separate signal from background

Mass=115 GeV/c ²	∫L (fb ⁻¹)	Expected Limit	Observed Limit
CDF	4.8	3.8	3.3
DØ	5.0	5.1	6.9

Missing Transverse Energy + Jets Final State

- Signature : large MET + heavy-flavor jets
- Large signal statistics but large background from multi-jet processes
- Background:
 Multi-jet } Fake MET due to instrumental effect
 Top, W/Z+HF jets, Dibosons Real MET

Leading Jet $P_T = 85.6 \text{ GeV}$

5.2

4.6

DØ

3.7

Run 248968 Evt 48062268 Fri Jan 23 06:59:26 2009

qqbb Final State

- Signal from associated (VH) and vector boson fusion (VBF) productions
- Advantage : Large signal yield, fully reconstructible final state
- **Disadvantage** : Huge multi-jet background
- Event selection: ≥4 jets, 2 b-tagged jets
- Train NN to separate multi-jet from Higgs

m=120	∫L (fb ⁻¹)	Expected	Observed
GeV/c ²		Limit	Limit
CDF	4.0	19.9	10.4

τ+MET+bb, ττqq Final State

- τ +MET+bb get contributions from :
 - •WH→τνbb
 - •ZH \rightarrow $\tau\tau$ bb (one τ is not identified)
- Select events:
 - •1 hadronic τ , MET, ≥ 2 jets, ≥ 1 b-tag
- Limits(m=115 GeV, 4 fb⁻¹):
 - •Observe (expect) 14.1 (22.4)

ττqq get contributions from :

- •ZH \rightarrow $\tau\tau qq$, ZH \rightarrow $qq\tau\tau$, WH \rightarrow $qq\tau\tau$, VBF(H \rightarrow $\tau\tau$), gg \rightarrow H+jets \rightarrow $\tau\tau$ +jets
- Select events: 2τ (one hadronic τ , one decays to $\mu v_{\mu} v_{\tau}$), ≥ 2 jets
- Limits(m=115 GeV, 4.9 fb⁻¹):
 - •Observe (expect) 27.0 (15.9)

γγ+X Final State

•Signal contributions from :

- gg→H→үү
- WH/ZH, H→үү
- qq→qqH (VBF), H→үү

•Select events with ≥ 2 photon candidates

•Background:

- •Direct QCD di-photon
- γ +jet, di-jet : jet fakes as γ
- •Z/ γ^* \rightarrow ee, e mis-identified as γ

• Scan in a di-photon mass window to search for a $H \rightarrow \gamma \gamma$ mass peak

m=120 GeV/c ²	∫L (fb ⁻¹)	Expected Limit	Observed Limit
CDF	5.4	19.4	22.5
DØ	4.2	17.5	13.1

Combined Search Results From Each Experiment

CDF Run II Preliminary, L=2.0-4.8 fb⁻¹

• Limits at low mass also receive contributions from high mass H→WW searches (Maiko Takahashi's talk)

Mass=115 GeV/c ²	Expected Limit	Observed Limit
CDF+DØ	1.78	2.70

Higgs Boson Search Projection

- Improvements are faster than $1/\sqrt{\int L dt}$ (gain from increasing data size)
 - •Due to better analysis techniques
- Band indicates possible improvements.
- Tevatron may exclude Higgs (@ 115 GeV) with $\int L dt \sim 6-10$ fb⁻¹

- With 10 fb⁻¹ for each experiment and including all improvement techniques :
 - •~35% chance to observe 3σ evidence in low mass region

Summary

- •CDF and DØ are pursuing extensive direct searches for the SM Higgs boson
- Exploring all possible search channels for low mass Higgs boson
- Combined Tevatron sensitivity is below 2*SM (for M(H)=115 GeV/c²)
- Tevatron is expected to deliver $\sim 10-12$ fb⁻¹ by end of 2011
- May have a chance to find evidence of Higgs in the low mass region if it exists there

Back-UP

Tevatron Combined Search Results

Experiments' Performance

Tevatron Luminosity Projection

Higgs Boson Search Projection

Probability of 2σ Excess

Probability of 3σ Evidence

•With 10 fb⁻¹ for each experiment and including all improvement techniques :

- •~70% chance to observe 2σ excess in low mass region
- •~35% chance to observe 3σ evidence in low mass region

Matrix Element Discriminant

• Matrix Element (ME) probability : probability that an observed event is from a particular physics process

 $P(x_{obs} | WH)$: probability of event from WH production

 x_{obs} : measured quantities of the event

$$P(x_{obs}) = \frac{1}{\langle \sigma \rangle} \int \frac{d\sigma(y)}{dy} \varepsilon(y) G(x_{obs}, y) dy$$

y : true values of the observables $d\sigma(y)/dy$: parton level differential cross section $\varepsilon(y)$: detector acceptance & efficiency $1/<\sigma>$: normalization constant $G(x_{obs}, y)$: transfer function representing the detector resolution

- The true values of the observables are unknown, therefore we need to integrate over them
- •Use probability values to compute likelihood :

$$L = \frac{P_S(x_{obs})}{P_S(x_{obs}) + \sum_i f_i \cdot P_i(x_{obs})}$$

 $P_{S}(x_{obs})$: probability of event to be signal $P_{i}(x_{obs})$: probability of event to be background *i*th f_{i} : fraction from background *i*th

Boosted Decision Tree

- •Training a decision tree:
 - Events of equal weight pass through a cascade of cuts
 - •Eventually events land on signal (S) or background (B) leaf node
 - Events landed in wrong leaf node (e.g. signal event land in BG node) are given larger weights (boosted)
 - •Tree is retrained, may build up 100-1000 tress
- •Trained decision trees are used to classify an event:
 - •A discriminant value is givent to an event based on the weighted sum of all the trees (weight is the boostweight)

