

Vrije Universiteit Brussel

Hot Topics from CMS (off the press)

Les Rencontres de Physique de la Vallée d'Aoste La Thuile, 2010 Stéphanie Beauceron on behalf of the CMS collaboration

On the Road to Standard Model and Searches...

- Tracker, wonderful tool
- Ecal, control calibration
- Jets
- Missing E_T, a challenging variable
- Particle Flow algorithm, improvement all the way...
- Conclusion

CMS Data Recording

Total weight 12500 t, Overall diameter 15 m, Overall length 21.6 m, Magnetic field 4 Tesla

Data are recorded using High Level Trigger as a pass through (rate of collisions maximum 20 Hz) → Record all events → Mainly identify collisions events using Beam Scintillator Counter [BSC]

Luminosity recorded: ~10 μ b⁻¹ at 900 GeV ~0.4 μ b⁻¹ at 2.36 TeV

Tracking Quality

Alignment from Cosmics data taken over summer 2009. Selection: Tracks with at least 6 hits Normalized chi² < 5 impact parameter with beam spot > 0.5 sigma, Both tracks at 1 cm of each other, oppositely charged

 $\frac{m}{m_{PDG}} = 1 + (1.9 \pm 0.9) \cdot 10^{-4}$

1080

 $p\pi^{-}$ (+ c.c.) invariant mass (MeV/c²)

Lifetime

Monte Carlo is simulated with the same conditions as in data.

• Data and MC are split into bins of cτ and a fit for the yield is performed in each bin.

• Divide MC yields by true (exponential) distribution to obtain correction factor.

Correct data and fit for lifetime.

PDG: 89.53 ± 0.05 ps

PDG: 263.1 ± 2.0 ps

Tracking Results

→ Alignment of tracker system is well understood

Electromagnetic Calorimetry

250

150

100

50

Precalibration from Test Beam period for 1/4 of barrel + Cosmic running (~1-2% precision)

Mass and width compatible with MC η yield scale as expected: Data: $N(\eta) / N(\pi^0) = 0.020 \pm 0.003$ MC: $N(\eta) / N(\pi^0) = 0.021 \pm 0.003$

Good agreement between data and MC

Calorimetry in Action

Tracks + Calorimetry

Step #1: ZSP correction to jet #1				
	$\mathrm{p_r}^{\mathrm{jet}}$	η	φ	
Raw	12	0.27	2.5	
ZSP	16	0.27	2.5	
gton #2.	"in_oono" tr	acka (nurnlo	v9)	
виер #&: #	ntrk	acks (purpie,	 ∧π	
#	P _T	E _{calo}		
1	4.8	-2.7	1.5	
2	5.1	-3.2	1.9	
Step #3: "out-of-cope" tracks (orange x6)				
#	D _m trk	E	ΔE	
1	17		17	
2	1.2	-	1.2	
3	0.3	-	0.3	
4	0.6	-	0.6	
5	0.4	-	0.4	
6	0.8	-	0.8	
Step #4: efficiency			$\Delta \mathbf{E}$	
In-cone			0.1	
Out-of-cone			0.4	
Corrected p_{T} for jet #1				
	$\mathrm{p}_{\mathrm{T}}^{\mathrm{jet}}$	η	φ	
JPT	24	0.23	2.5	

= 3.0

Direction correction

 $\Delta \boldsymbol{\varphi}$ (corrected)

 $\Delta \phi$ (uncorrected) = 3.1

when including tracks.

Corrected p _r for jet #2					
	$\mathrm{p}_{\mathrm{rr}}^{\mathrm{jet}}$	η	φ		
RAW	13	2.0	-0.69		
ZSP	17	2.0	-0.69		
JPT	25	1.9	-0.55		

Jets reconstructed as Jets+tracks **Di-jets:** • $P_T > 8 \text{ GeV}$ • |η| <**2.0**

→ Good agreement between data and MC and good agreement between calorimeter based jets and jets + tracks

Inclusive Jets Analysis

Missing E_T

Important variables for physics analysis but most challenging variable to understand → Rely on good understanding of all the other objects.

RAW Calorimetric ME_T

→ Stability of calorimetric missing E_T calculation during the whole period of data taking.

Missing E_T

Cleaning of Missing E_T: (Events are not removed, only hot spot)

- Noise in Hadronic Forward (particle hitting the PMT window)
- Noise in Hadronic Calorimeter [HB/HE] (specific pattern of channels)
- Noise in Electromagnetic Calorimeter (single Hot channel)

Agreement Data/MC on variables even if calibration of detector are not final

Particle Flow Algorithm

Exploring the fine resolution and granularity of part of the CMS detector to improve the identification and resolution of reconstructed objects using Particle Flow Algorithms. Principle: link track and cluster and cluster to cluster in fine grain

Particle Flow Commissioning

Need to establish track Ecal/Hcal cluster link:

Particle Flow Jets

Charged Hadrons Calibration:

Inclusive jet analysis: $p_{T}^{raw} > 5 \text{ GeV}$

700

600

500

400 300

200 100 **0**^k -3 $|\eta| < 3.0$

previl > 5 GeV/c

-2

-1

0

1

2

3

Jetó

Data

Simulation

Particle Flow Jet Properties

Jets reconstructed using Anti-KT R=0.5 algorithm from particle flow particles Di-jet analysis:

• P_T>8 GeV • |η|<3.0 • |Δφ(j1,j2) – π|<1.0

And finally... CMS Back Alive!

Conclusion

From the first collisions day, a lot of results have been appearing very quickly → Understanding and commissioning of the detector is in well advanced stage

Start to use complex algorithms with very few fine tuning → Agreement with simulation is impressive all the way through

CMS is waiting for higher statistics of data and higher center of mass energy to start to perform searches

→ By ICHEP, should start to see more Standard Model physics at 7 TeV and...

AntiKt

- Pairwise examination of input 4-vectors
- Calculate d_{ii}

$$d_{ij} = min(k_{ti}^n, k_{tj}^n)\Delta R_{ij}^2/R^2$$

- N = 2: k_{T}
- N = 0: Cambridge Aachen
- N = -2: anti-k_T
- Also find the "beam distance"

$$d_{iB} = k_{T,i}^n$$

- Find min of all d_{ij} and d_{iB}
- If min is a d_{ij}, merge and iterate
- If min is a d_{iB}, classify as a final jet
- Continue until list is exhausted

1: arXiv:hep-ph/9707323

2

4

1

3