Search for Higgs Bosons with early data in ATLAS

Michael Duehrssen CERN on behalf of the ATLAS collaboration

TLAS

PERIMENT

La Thuile, Aosta Valley, Italy 05.03.2010

Jet Event at 2.36 TeV Collision Energy

2009-12-14, 04:30 CET, Run 142308, Event 482137 http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html

Outline

2009-12-06, 08:25 CET Run 141749, Event 133538 Introduction Detector performance • Higgs with ~ 1 fb⁻¹ → H→WW \rightarrow H \rightarrow ZZ Higgs with ~ 10 fb⁻¹ \rightarrow H \rightarrow $\gamma\gamma$ $\rightarrow H \rightarrow \tau \tau$ → H→bb

Reference for most results: "Expected Performance of the ATLAS Experiment: detector, trigger and physics" CERN-OPEN-2008-020, http://arxiv.org/pdf/0901.0512 COllision Event with 2 Muon Candidates http://atlas.web.cern.ch/Atlas/public/EVTDISPLAY/events.html

Standard Model Higgs at the LHC

Michael Duehrssen

What is early data for Higgs physics

significance

The ATLAS Detector

In parallel to physics with first data: Detector commissioning and understanding!

La-Thuile 2010

Michael Duehrssen

Inner Detector

Michael Duehrssen

Calorimeter system

Tile barrel

Tile extended barrel

- Electromagnetic accordion calorimeter (LAr)
 - Precision measurement of photons and electrons

LAr electromagnetic end-cap (EMEC) —

- |η|<3.2
- Intrinisic resolution ~10%/ \sqrt{E}
- Hadronic calorimeter
 - Scintillator Tile calorimeter |η|<1.7
 - Hadronic endcap (LAr) 1.5<|η|<3.2
- Forward calorimeter (LAr)
 - 3.2<|η|<4.9
- Altogether gives hermetic coverage up to |η|<4.9
- Essential for the reconstruction of jets, the missing transverse momentum and for the trigger

LAr forward (FCal)

Calorimeter performance

Muon Spectrometer

- Tracking and trigger
- 4 detector types :
 - Monitored drift tubes
 - Cathode drift chambers
 - Thin-gap chambers
 - Resistive plate chambers
- $|\eta|$ coverage up to 2.7
- Magnetic field produced by 3x8 large coils + End-cap toroids
- Up to 4T magnetic field

Muon System performance

Higgs Boson physics with ~1 fb⁻¹

(Inclusive) $H \rightarrow WW \rightarrow I_{v}$ (0 jet analysis)

Low event statistics with 1 fb⁻¹: most channels not visible yet

- \rightarrow gg \rightarrow H \rightarrow WW \rightarrow Iv Iv: Most promising channel for a SM Higgs Boson
- Pro: 2 Leptons in the final state \rightarrow clear signal
- Con: 2 Neutrinos in the final state \rightarrow no Higgs mass peak

 \rightarrow large background systematic

Inclusive $H \rightarrow WW \rightarrow I\nu I\nu$

- Dominant signal process • $gg \rightarrow H \rightarrow WW \rightarrow I\nu I\nu$
- Dominant backgrounds • WW (including gg→WW)
- vvvv (including $gg \rightarrow vvv$
- tt, Wt
- Z→II
- W+jets

Basic event selection:

- 2 isolated leptons, p_T >15 GeV, $|\eta|$ <2.5
- E_T^{miss} >30 GeV
- 12 GeV<m_{_}<300 GeV
- |m₇₇-m_z|<25 GeV
- Jet veto: $p_{T} > 20$ GeV, $|\eta| < 4.8$
- b-Jet veto $p_{T} > 15 \text{ GeV}$

suppressed background W+jets $Z \rightarrow ee/\mu\mu$ cc, bb, Wt, ... $Z \rightarrow \tau\tau$ tt, Wt tt, Wt

H→WW: Signal discrimination

Two neutrinos in the final state:

- no Higgs Boson mass peak can be reconstructed
- But: WW pair produced in the decay of the spin 0 Higgs Boson

Michael Duehrssen

H→WW: Background determination

- No clear signal peak:
 → Signal and background separated with a fit using flexible template functions and control samples for the backgrounds
- A Likelihood ratio is used for the signal extraction

- Determination of systematic uncertainties is crucial:
 detector effects
 - uncertainties on background cross sections and shapes
- The Higgs boson mass can be extracted from the best fit signal template function

Michael Duehrssen

H→WW significance

Michael Duehrssen

La-Thuile 2010

WBF/VBF H→WW

WBF selection

Similar final state selection as for the H→WW (0 jet) analysis
Additional selection on forward tag jets (①, ②, ③) and jet veto (④)

Michael Duehrssen

La-Thuile 2010

WBF H→WW significance

WBF H \rightarrow **WW** \rightarrow **e** $\nu \mu \nu$ channel:

- →Conservative 5σ discovery potential in the mass range ~160GeV to ~170GeV with 10 fb⁻¹
- Higgs boson mass sensitivity even without clear peak

Michael Duehrssen

La-Thuile 2010

Combined 1 fb⁻¹ H→WW significance

 Significance extrapolated from the 14 TeV studies •~4 σ discovery potential possible with 1 fb⁻¹ at 7 TeV

Combination of 0j and 2j, H to WW to II

Michael Duehrssen

La-Thuile 2010

$H \rightarrow ZZ \rightarrow 4I$

$H \rightarrow ZZ \rightarrow 4I$ selection

- 4 good quality leptons
- Lepton calorimeter and track isolation (reduce tt, Zbb background)
- Veto against leptons with large impact parameter (reduce tt, Zbb)
- Lepton flavours, charges and dilepton masses compatible with 2*Z→II

Signal peak visible above continuous background

H→ZZ→4l results

Michael Duehrssen

Η→γγ

$H \rightarrow \gamma \gamma$ results

Michael Duehrssen

WBF $H \rightarrow \tau \tau$

WBF $H \rightarrow \tau \tau$ results

WH H→bb

- Small cross section, large branching ratio
- Follow idea of J. Butterworth et al. [PRL 100:242001,2008]
- Select events (≈5% of xsec), in which H and W bosons have $p_{\tau} > 200 \text{ GeV}$
- Select the b-quarks in the fat mono-jet

m

b

Н

Ŵ

υ

WH H→bb

ATL-PHYS-PUB-2009-088 Analyse jet b R_{bb} b substructure: R_{bb} mass drop filter ⁻ 20 ຢູ່ິ ຄ မှ<u>ိ</u>ရ16 950' 800 ATLAS preliminary ATLAS prelimina Higas ATLAS preliminary ₩tt Zi (simulation) 🛛 V+jets (simulation) (simulation) 💥 V+jets Events / 8GeV / 8 01 8GeV / 1) top 77 >၅ မီ **ಿ₀**¹6 √s=14 TeV VV 1)1) VV Higgs "∰14 m_µ=120 GeV Higgs Total S = 13.5 B = 20.3 Total S = 16.3 B = 104.2 Events / Total S = 5.3 B = 12.2 Events/ 10 10 Range 112-136GeV L=30 fb⁻¹ Range 104-136GeV Range 104-136GeV √s=14 TeV m_µ=120 GeV √s**=14 TeV** 20 m_=120 GeV L=30 fb⁻¹ L=30 fb⁻¹ 10 2 0^L 80 100 120 140 160 180 200 20 40 60 20 40 60 80 100 120 140 160 180 200 20 40 60 120 140 160 180 200 80 Higgs mass [GeV/c²] Higgs mass [GeV/c²] Higgs mass [GeV/c²] $\overline{I_R} = 1.5$ =1.6 $L^{int.} = 30 fb^{-1} : \frac{S}{\sqrt{P}} = 3.0$ • S/B much better than for ttH $H \rightarrow bb$ Different backgrounds for different channels $\frac{3}{\sqrt{p}} = 3.7$ Combined:

Still good sensitivity including systematics

(e.g. S/JB = 3.0 for 15% uncertainty on all backgrounds)

Michael Duehrssen

(Pile-Up not yet included)

Conclusion: discovery and exclusion

- With 2 fb⁻¹ at \sqrt{s} =14 TeV a Standard Model Higgs Boson discovery is possible in the range ~140 < m_H < ~180 GeV
- A 2σ exclusion is possible for m_H>115 GeV
- One can expect that the $H \rightarrow WW$ and $H \rightarrow ZZ$ channels are sensitive to a Higgs Boson exclusion already with ~1 fb⁻¹ at $\sqrt{s}=7$ TeV.
- In the SM, the $H \rightarrow \tau \tau$, $H \rightarrow \gamma \gamma$ and $H \rightarrow bb$ channels need more than 1 fb⁻¹

