Rare Decays at B Factories

Kurtis Nishimura University of Hawaii Les Rencontres de Physique de la Vallée d'Aoste March 3, 2010

Luminosity at the B Factories

Integrated Luminosity(cal)

Rare Decays, Loops and Penguins

- Flavor changing neutral current (FCNC) processes are forbidden at tree level → loops make them sensitive to potential contributions from new physics.
 - Radiative penguins, e.g., $b
 ightarrow s\gamma$:

– Electroweak penguins or box diagrams, e.g., $b o s \ell \ell$, $b o s \nu \overline{
u}$:

Outline

- Radiative penguins: $b
 ightarrow s \gamma$
 - Exclusive:
 - $B \to K \eta^{(\prime)} \gamma$
 - $B \to K \dot{\phi} \gamma$
 - $B \to K^* \gamma$
 - Inclusive
- Electroweak penguins: $b \to s \ell^+ \ell^-, b \to s \nu \overline{\nu}$
 - Exclusive:
 - $B \to K^{(*)}\ell\ell$
 - $B \to K \nu \overline{\nu}$
 - Inclusive
- Hadronic penguins: $b \rightarrow sg, b \rightarrow sq\overline{q}$
 - Exclusive:
 - $B \rightarrow \eta^{(\prime)} K^{(*)}$
 - $B \to \eta' \rho$
 - $B \rightarrow \eta' f_0$
 - Inclusive: $B \to X_s \eta^{(\prime)}$

Radiative Penguins: $b ightarrow s\gamma$

• Extensions of the Standard Model can have particles that contribute in the loops...

- Search for beyond SM contributions in:
 - Branching fractions
 - Inclusive measurements → more experimental uncertainty, smaller theoretical uncertainties.
 - Exclusive measurements → smaller experimental uncertainty, larger theoretical uncertainties (hadronic uncertainties).
 - CP asymmetries
 - Isospin asymmetries

Exclusive $B \to K^*(892)\gamma$

383M BB PRL **103**, 211802 (2009)

- Branching fractions: $\mathcal{B}(B^0 \to K^{*0}\gamma) = (4.47 \pm 0.10 \pm 0.16) \times 10^{-5}$ $\mathcal{B}(B^+ \to K^{*+}\gamma) = (4.22 \pm 0.14 \pm 0.16) \times 10^{-5}$
- CP asymmetry:

$$\mathcal{A} = \frac{\Gamma(\bar{B} \to \bar{K}^* \gamma) - \Gamma(B \to K^* \gamma)}{\Gamma(\bar{B} \to \bar{K}^* \gamma) + \Gamma(B \to K^* \gamma)}$$

Measured:

 $\mathcal{A} = -0.003 \pm 0.017 \pm 0.007$ $-0.033 < \mathcal{A} < 0.028$ (90% CL)

Isospin asymmetry:

$$\Delta_{0-} = \frac{\Gamma(\bar{B}^0 \to \bar{K}^{*0} \gamma) - \Gamma(B^- \to K^{*-} \gamma)}{\Gamma(\bar{B}^0 \to \bar{K}^{*0} \gamma) + \Gamma(B^- \to K^{*-} \gamma)}$$
Measured:

 $\overline{\Delta_{0-}} = 0.066 \pm 0.021 \pm 0.022$ $0.017 < \Delta_{0-} < 0.116 \quad \text{(90\% CL)}$

Mar. 3 2010 - La Thuile

 $b \rightarrow s \gamma$ & Right Handed Currents

- In SM, photon polarizations in $b \to s \gamma$ depend on *b* flavor:

- Presence of mixing-induced CP violation would indicate the presence of right handed currents and clear hints of new physics.
 - This type of new physics does not require a new phase.

Exclusive $B \rightarrow K\eta\gamma$

465M BB PRD **79**, 011102 (2009)

$$\begin{split} \mathcal{B}(B^+ \to \eta K^+ \gamma) &= (7.7 \pm 1.0 \pm 0.4) \times 10^{-6} \\ A_{\rm CP} &= (-9.0^{+10.4}_{-9.8} \pm 1.4) \times 10^{-2} \\ \mathcal{B}(B^0 \to \eta K^0 \gamma) &= (7.1^{+2.1}_{-2.0} \pm 0.4) \times 10^{-6} \\ \end{split}$$
First time dependent CPV search in this mode:

$$S = -0.18^{+0.49}_{-0.46} \pm 0.12$$
$$C = -0.32^{+0.40}_{-0.39} \pm 0.07$$

Similar mode, $B^0 \rightarrow K_S^0 \rho^0 \gamma$ measured at Belle w/ 657 M BB [PRL **101**, 251601 (2008)]:

$$S(B^0 \to K_S^0 \rho^0 \gamma) = 0.11 \pm 0.33^{+0.05}_{-0.09}$$
$$C(B^0 \to K_S^0 \rho^0 \gamma) = -0.05 \pm 0.18 \pm 0.06$$

In both cases, analyses need improved statistics. Potentially promising for Super B factories!

Exclusive $B \to K\eta'\gamma$, $B \to K\phi\gamma$

 $B \to K \eta' \gamma$

657M BB arXiv: 0810.0804, Submitted to PRD(RC)

 $\mathcal{B}(B^0 \to K^0 \eta' \gamma) \le 6.4 \times 10^{-6} \ (90\% \text{ CL})$ $\mathcal{B}(B^+ \to K^+ \eta' \gamma) = (3.6 \pm 1.2 \pm 0.4) \times 10^{-6}$ <u>First evidence</u> w/ 3.3σ significance

 $\mathcal{B}(B^+ \to \phi K^+ \gamma) = (2.34 \pm 0.29 \pm 0.23) \times 10^{-6}$

 $\mathcal{B}(B^0 \to \phi K^0 \gamma) = (2.66 \pm 0.60 \pm 0.32) \times 10^{-6}$ Events / (0.02 GeV) <u>First observation w/ 5.4 σ significance</u> Time dependent analysis ongoing...

.23 5.24 5.25 5.26 M_{bc} (GeV/c

Events / (0.0025 GeV/c²

Events / (0.0025 GeV/c²

Inclusive $b ightarrow s\gamma$

- Fully inclusive measurement (only the \mathcal{O} of \mathcal{O} of \mathcal{O} of \mathcal{O}
- the γ w/ E^{CM} > 1.4 GeV is

reconstructed):

- Divided into two streams:
 - MAIN without lepton tag
 - LT w/ lepton tag, reduces qq background
- A data sample of 68 fb⁻¹ taken below $\Upsilon(4S)$ is used to subtract
 - $e^+ e^- \rightarrow qq$ backgrounds from 605 fb⁻¹ on-resonance sample.

<u>Left</u>: photon energy distributions in data for on resonance, off resonance, and continuum subtracted samples.

<u>Right</u>: photon energy signal / background distributions. π^{o} and η backgrounds dominate

657M BB

X,

Inclusive $b ightarrow s\gamma$

--> : control regions (no yield expected)

- Untagged and tagged spectra are combined:
 - Corrected for selection efficiency.
 - Including statistical correlations between tagged/untagged spectra.

 $\mathcal{B}(B \to X_s \gamma) = (3.45 \pm 0.15 \pm 0.40) \times 10^{-4}$ 1.7 GeV < $E_{\gamma} < 2.8$ GeV

Inclusive $b \rightarrow s\gamma$

Limits from $b \to s \gamma$

Mar. 3 2010 - La Thuile

K. Nishimura - Rare Decays at B Factories

Electroweak Penguins $b \rightarrow s\ell\ell, b \rightarrow s\nu\overline{\nu}$

- Observables:
 - Branching fractions
 - Large theoretical form factor uncertainties
 - Longitudinal polarization fraction (F_L) $\frac{d\Gamma}{d\cos\theta_{K^*}} = \frac{3}{2}F_L\cos^2\theta_{K^*} + \frac{3}{4}(1-F_L)(\sin^2\theta_{K^*})$
 - Forward backward asymmetry (A_{FB})

$$\frac{d\Gamma}{d\cos\theta_{B\ell}} = \frac{3}{4}F_L\sin^2\theta_{B\ell} + \frac{3}{8}(1 - F_L)(1 + \cos^2\theta_{B\ell}) + A_{FB}\cos\theta_{B\ell}$$

Branching Fractions for $B \to K^{(*)}\ell\ell$

 $\mathcal{B}(B \to K^* \ell^+ \ell^-) = (10.7^{+1.1}_{-1.0} \pm 0.9) \times 10^{-7}$

: SM expectation w/ min. & max. form factors from[Ali et al. PRD 66, 034002 (2002)]

Lines are SM predictions w/ various form factor models.

F_L, and **A**_{FB} for $B \to K^* \ell \ell$

$$\frac{d\Gamma}{d\cos\theta_{K^*}} = \frac{3}{2}F_L\cos^2\theta_{K^*} + \frac{3}{4}(1 - F_L)(\sin^2\theta_{K^*})$$

 $\frac{d\Gamma}{d\cos\theta_{B\ell}} = \frac{3}{4}F_L\sin^2\theta_{B\ell} + \frac{3}{8}(1-F_L)(1+\cos^2\theta_{B\ell}) + A_{FB}\cos\theta_{B\ell}$

Mar. 3 2010 - La Thuile

K. Nishimura - Rare Decays at B Factories

Inclusive $B \to X_s \ell \ell$

• Opposite sign C₇ would enhance branching fraction of $B \to X_s \ell \ell$

- Modest form factor uncertainties relative to $K^{(*)}\ell\ell$
- Belle update with sum-of-exclusive technique, , $X_s = K + n\pi$, n = 0-4

Branching Fraction for $B \to X_s \ell \ell$

$$\mathcal{B}_{\rm SM}(B \to X_s \ell \ell) = (4.2 \pm 0.7) \times 10^{-6}$$

No enhancement \rightarrow opposite sign C₇ is **not** favored by the inclusive measurement.

Searches for $B \to K \nu \overline{\nu}$

• Previous best upper limits (90% CL):

- BaBar, semileptonic tagging:

$$\mathbf{B}(B^+ \to K^+ \nu \overline{\nu}) < 4.5 \times 10^{-5}$$

351M BB arXiv: 0911.1988

– Belle, using full hadronic reconstruction of one B:

$$B(B^{+} \to K^{+} \nu \overline{\nu}) < 1.4 \times 10^{-5}$$
$$B(B^{0} \to K^{0} \nu \overline{\nu}) < 16 \times 10^{-5}$$

New BaBar $B \to K \nu \overline{\nu}$ w/ semileptonic tagging

459M BB

Preliminary

- Method:
 - Tag one B using $D^{(*)}\ell v$ (~1% efficiency)
 - Look for a lone K (K_s plots shown, K⁺ in backup)
 - Multivariate technique (bagged decision tree) to select events

Mar. 3 2010 - La Thuile

Hadronic Penguins

- Final states with $\eta\,$ and $\,\eta'\,$ particularly interesting:
 - Interference patterns in dominant amplitudes
 - Sensitive to flavor singlet contributions
- Branching fractions:
 - A history of unexpected or unexpectedly large signals

Observation of $\ \eta' \rho^+, \eta' K_2^* (1430)^{(0,+)}$! Evidence for $\ \eta' K^{*(0,+)}$!

Exclusive $B \to \eta'(\rho, f_0, K^*(892), K^*(1430))$

	DBR
C	~
	1
	0

467M BB Preliminary

BaBar Preliminary

Mode	Y (events)	Y_0 (events)	$\stackrel{\epsilon}{(\%)}$	$\prod_{\substack{(\%)}} \mathcal{B}_i$	$S \\ (\sigma)$	(10^{-6})	${\mathcal B}$ U.L. (10 ⁻⁶)	$\mathcal{A}_{\mathrm{ch}}$
$\eta' \rho^0$	37 ± 15	9 ± 5	23.4	17.5	2.0	$1.5\pm0.8\pm0.3$	2.8	_
$\eta' f_0$	8 ± 8	4 ± 2	25.9	17.5	0.5	$0.2^{+0.4}_{-0.3}\pm 0.1$	0.9	_
$\eta' \rho^+$	128 ± 22	15 ± 8	14.3	17.5	5.8	$9.7^{+1.9}_{-1.8}\pm1.1$	_	$0.26 \pm 0.17 \pm 0.02$
$\eta' K^{*0}$					4.0	$3.1^{+0.9}_{-0.8}\pm0.3$	4.4	$0.02 \pm 0.23 \pm 0.02$
$\eta' K^{*+}$					3.8	$4.8^{+1.6}_{-1.4}\pm0.8$	7.2	$-0.26 \pm 0.27 \pm 0.02$
$\eta'(K\pi)_0^{*0}$					5.6	$7.4^{+1.5}_{-1.4}\pm0.6$	_	$-0.19 \pm 0.17 \pm 0.02$
$\eta'(K\pi)_{0}^{*+}$					2.9	$6.0^{+2.2}_{-2.0}\pm0.9$	9.3	$0.06 \pm 0.20 \pm 0.02$
$\eta' K_2^* (1430)^0$					5.3	$13.7^{+3.0}_{-2.9}\pm1.2$	_	$0.14 \pm 0.18 \pm 0.02$
$\eta' K_2^* (1430)^+$					7.2	$28.0^{+4.6}_{-4.3}\pm2.6$	_	$0.15 \pm 0.13 \pm 0.02$

•No significant direct CP asymmetry in any modes.

- •Results for $\eta' \rho^+$ generally favor pQCD and QCDF predictions over SCET
- •<u>Unexpected enhancements</u> of K₂*(1430) over K^{*}(892)

$B \rightarrow X_s \eta$ Branching Fraction

Signals beyond the known K*(892,1430) contributions in both Xs η and Xs η' modes

Mar. 3 2010 - La Thuile

Conclusion

- Rare B decays provide a valuable tool to test Standard Model predictions.
- Both Belle and BaBar have accumulated a large set of data with which to study these decays...
 - We can look forward to many final results using the entirety of the Belle and BaBar data sets...
 - ...but many modes require significantly improved statistics:
 - Super B factories may reveal and elucidate the nature of new physics!
 - → More on SuperKEKB in Bostjan's talk on Friday.

Backup Slides

B→K^(*)II: Isospin Asymmetry

A_I deviates from zero at low-q²?

26

Branching fraction and lepton flavor ratio

- \$\mathcal{B}\$ ~ 10⁻⁶ or less also measured by CDF (CDF PRD79,011104(2009), 924 pb⁻¹)
- Differential BF sensitive to Wilson coefficients (but suffer from form-factor uncertainty)
- Lepton flavor ratio: sensitive to SUSY neutral Higgs at large $\tan \beta$ $R_{K^{(*)}} = \frac{\mathcal{B}(B \to K^{(*)}\mu^+\mu^-)}{\mathcal{B}(B \to K^{(*)}e^+e^-)}$ Belle BaBar R_K 1.03 ± 0.19 ± 0.06 0.96 $^{+0.44}_{-0.34}$ ± 0.05 R_{K^*} 0.83 ± 0.17 ± 0.05 1.10 $^{+0.42}_{-0.32}$ ± 0.07

 $(R_{\kappa^*}^{\rm SM} = 0.75 \text{ due to photon pole})$

Inclusive $B \rightarrow X_s \ell^+ \ell^-$ are yet to be updated (Last results were 152 M (Belle) / 88 M (BaBar))

$CDF B \to K^{(*)}\ell^+\ell^-$ (924 pb⁻¹)

CDF Collaboration, T. Aaltonen et al., PRD 79, 011104 (2009)

$$\begin{aligned} \mathcal{B}(B^+ \to K^+ \mu^+ \mu^-) &= (5.9 \pm 1.5 \pm 0.4) \times 10^{-7} \\ \mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-) &= (8.1 \pm 3.0 \pm 1.0) \times 10^{-7} \\ \frac{\mathcal{B}(B^0_s \to \phi \mu^+ \mu^-)}{\mathcal{B}(B \to J/\psi \phi)} &< 2.6 \ (2.3) \times 10^{-3} \ (95(90)\% \ \text{CL}) \end{aligned}$$

$B \rightarrow K^* \ell^+ \ell^-$ and Wilson coefficients

• Forward-backward asymmetry (A_{FB}) and Wilson coefficients

$$A_{\rm FB}(q^2) = -C_{10}^{\rm eff}\xi(q^2) \left[Re(C_9^{\rm eff})F_1 + \frac{1}{q^2}C_7^{\rm eff}F_2 \right] dq^2$$

(similar to γ -Z interference at high energy)

- Wilson coefficients to identify type of new physics
 - C₇ for magnetic penguin operator $\left[\frac{e}{8\pi^2}m_b\overline{s}_i\sigma^{\mu\nu}(1+\gamma_5)b_iF_{\mu\nu}\right]$

(size is determined from $b \rightarrow s\gamma$, but sign is from $b \rightarrow s\ell^+\ell^-$)

- C_9 for vector electroweak operator $[(\overline{b}s)_{V-A}(\overline{\ell}\ell)_V]$
- C_{10} for axial-vector electroweak operator $[(\overline{bs})_{V-A}(\overline{\ell}\ell)_A]$

Angular distributions to extract FB asymmetries

K* longitudinal polarization F_L from kaon angle θ_K $\frac{3}{2}F_L\cos^2\theta_K + \frac{3}{4}(1 - F_L)(1 - \cos^2\theta_K)$ Forward-backward asymmetry A_{FB} from lepton angle θ_ℓ $\frac{3}{4}F_L(1 - \cos^2\theta_\ell) + \frac{3}{8}(1 - F_L)(1 + \cos^2\theta_\ell) + A_{FB}\cos\theta_\ell$

$B \rightarrow X_s \ell^+ \ell^-$ and Wilson coefficients

$$\frac{d\Gamma(b \to s\ell^+\ell^-)}{dq^2} = \left(\frac{\alpha_{\rm em}}{4\pi}\right)^2 \frac{G_F^2 m_b^5 \left|V_{ts}^* V_{tb}\right|^2}{48\pi^3} (1-q^2)^2 \\ \times \left[(1+2q^2)\left(|C_9^{\rm eff}|^2 + |C_{10}^{\rm eff}|^2\right) + 4\left(1+\frac{2}{q^2}\right)|C_7^{\rm eff}|^2 + 12\text{Re}\left(C_7^{\rm eff}C_9^{\rm eff}\right)\right] + \text{corr.}$$

- Inclusive differential branching fraction is sensitive to Wilson coefficients (no form factor uncertainties of $B \rightarrow K^* \ell^+ \ell^-$)
- Opposite-sign C_7 makes the branching fraction larger (in SM, $C_7 < 0$ and $C_9 > 0$)
- Fully inclusive measurement is not feasible so far, sum-of-exclusive technique has been used by Belle/BaBar

New BaBar $B \to K \nu \overline{\nu}$ w/ semileptonic tagging

459M BB

Preliminary

• Method:

- Tag one B using $D^{(*)}\ell v$ (~1% efficiency)
- Look for a lone K
- Multivariate technique (bagged decision tree) to select events

Mar. 3 2010 - La Thuile

K. Nishimura - Rare Decays at B Factories

Modes including η , η'

- Br(η'K) >> Br(ηK)
 - -- a long-standing issue
- $A_{CP}(\eta K) > A_{CP}(\eta K)$?
- Input to SU(3)-based calculation for $\Delta S = S_{c\overline{cs}} S_{\eta'K,\phi K}$

BaBar: 467 M BB

• $A_{CP}(B^+ \rightarrow \eta K^+)$

 $A_{CP}(B^+ \to \eta K^+) = -0.36 \pm 0.11 \pm 0.03$

• Evidence for three decay modes. $Br(B^0 \to \eta K^0) = (1.15 {}^{+0.43}_{-0.38} \pm 0.09) \times 10^{-6}$ $Br(B^0 \to \eta \omega) = (0.94 {}^{+0.35}_{-0.30} + 0.19) \times 10^{-6}$ $Br(B^0 \to \eta' \omega) = (1.01 {}^{+0.46}_{-0.38} \pm 0.09) \times 10^{-6}$

Within SM, proceed via W annihilation.

$$\mathcal{B}(B^- \to \ell^- \bar{\nu}) = \frac{G_F^2 m_B m_\ell^2}{8\pi} \left(1 - \frac{m_\ell^2}{m_B^2}\right)^2 f_B^2 |V_{ub}|^2 \tau_B$$

Helicity suppression $Br(B \rightarrow e \nu) \ll Br(B \rightarrow \mu \nu) \ll Br(B \rightarrow \tau \nu)$
~10-7Determination of $f_{B}|V_{ub}|$ $f_{B} = 190 \pm 13 \ MeV$ HPQCD,
0902.1815v2
0902.1815v2
 $|V_{ub}| = (4.32 \pm 0.16 \pm 0.29) \times 10^{-3} \ HFAG$
ICHEP08 $W_{ub}| = (4.32 \pm 0.16 \pm 0.29) \times 10^{-3} \ HFAG$
ICHEP08Sensitive also to NP (charged Higgs)

Constraint on Charged Higgs

Naïve world average Br(τv) = [1.73±0.35]×10⁻⁴

Effect of Charged Higgs

W. Hou, Phys. Rev. D48, 2342 (1993)

 $Br_{SM}(\tau v) = [1.20 \pm 0.25] \times 10^{-4}$

Based on fB from HPQCD and $|V_{ub}|$ from HFAG (BLNP, ICHEP08)

Constraint on charged Higgs

Comparison to CKM fit

The measured Br is 2.4 σ higher than the value predicted by the CKM fit.

10

Combined charged Higgs bound from B-factories

Time Dependent CPV in B⁰ decays

N.B. Time integrated mixing-induced asymmetries vanish